Notes on Pairwise Uniform Bits

Pseudorandomness, Autumn 2023, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

Definition 1 (k-junta). Let f be a function on $\{0,1\}^{n}$. We say that f is a k-junta if there exist indices $i_{1}, \ldots, i_{k} \in[n]$ and there exists a function g on $\{0,1\}^{k}$ such that for every $x \in\{0,1\}^{n}$, we have

$$
f(x)=g\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)
$$

We will present a PRG that fools 2-juntas (with error zero). The correctness of the PRG is based on the following lemma.
Lemma 1. Let Y and Z be $\{0,1\}$-valued random variables. Assume that Y, Z, and $Y \oplus Z$ are uniformly distributed over $\{0,1\}$. Then (Y, Z) is uniformly distributed over $\{0,1\}^{2}$.

Proof. For each $a, b \in\{0,1\}$, let $p_{a b}=\operatorname{Pr}[(Y, Z)=(a, b)]$. Then

$$
\begin{align*}
p_{00}+p_{01} & =\operatorname{Pr}[Y=0]=1 / 2 & & \text { because } Y \text { is uniform } \tag{1}\\
p_{00}+p_{10} & =\operatorname{Pr}[Z=0]=1 / 2 & & \text { because } Z \text { is uniform } \tag{2}\\
p_{01}+p_{11} & =\operatorname{Pr}[Z=1]=1 / 2 & & \text { because } Z \text { is uniform } \tag{3}\\
p_{00}+p_{11} & =\operatorname{Pr}[Y \oplus Z=0]=1 / 2 & & \text { because } Y \oplus Z \text { is uniform. } \tag{4}
\end{align*}
$$

Subtracting (3) from (1) gives $p_{00}=p_{11}$. Plugging into (4), this implies $p_{00}=p_{11}=1 / 4$. Plugging $p_{00}=1 / 4$ into (1) and (2) gives $p_{01}=p_{10}=1 / 4$.

Now we are ready to present the PRG.
Theorem 1. There is a $\operatorname{PRG} G:\{0,1\}^{s} \rightarrow\{0,1\}^{n}$ that fools 2 -juntas with error 0 and seed length $s=$ $\lfloor\log n\rfloor+1$.

Proof. Let I_{1}, \ldots, I_{n} be distinct, nonempty subsets of $[s]$. (Such sets exist because $2^{s}>n$.) The PRG is given by

$$
G(x)=\left(\bigoplus_{i \in I_{1}} x_{i}, \bigoplus_{i \in I_{2}} x_{i}, \ldots, \bigoplus_{i \in I_{n}} x_{i}\right) .
$$

For the analysis, consider any two output coordinates of G, say $j, k \in[n]$ where $j \neq k$. Sample $X \sim U_{n}$ and let Y and Z be the j-th and k-th output bits of G, namely

$$
\begin{aligned}
Y & =\bigoplus_{i \in I_{j}} X_{i} \\
Z & =\bigoplus_{i \in I_{k}} X_{i} .
\end{aligned}
$$

Because the sets I_{1}, \ldots, I_{n} are nonempty, each individual output bit such as Y or Z is uniformly distributed over $\{0,1\}$. Now let us look at the XOR of two output bits:

$$
Y \oplus Z=\left(\bigoplus_{i \in I_{j}} X_{i}\right) \oplus\left(\bigoplus_{i \in I_{k}} X_{i}\right)=\bigoplus_{i \in I_{j} \Delta I_{k}} X_{i},
$$

where $I_{j} \Delta I_{k}$ denotes the "symmetric difference" of I_{j} and I_{k}, namely $I_{j} \Delta I_{k}=\left(I_{j} \backslash I_{k}\right) \cup\left(I_{k} \backslash I_{j}\right)$. Since I_{j} and I_{k} are distinct, the symmetric difference $I_{j} \Delta I_{k}$ is nonempty, and therefore $Y \oplus Z$ is uniformly distributed over $\{0,1\}$. Therefore, by the lemma, (Y, Z) is uniformly distributed over $\{0,1\}^{2}$.

Terminology: Let X_{1}, \ldots, X_{n} be random variables. We say that X_{1}, \ldots, X_{n} are pairwise independent if every two of them are independent, i.e., for every two indices $i, j \in[n]$ with $i \neq j$, the two random variables X_{i} and X_{j} are independent. We say that X_{1}, \ldots, X_{n} are pairwise uniform if they are pairwise independent and each X_{i} is distributed uniformly over its domain. A PRG that fools 2-juntas with error 0 is called a pairwise uniform generator.

Remark 1. People are not always careful to distinguish the concept of pairwise independence from the concept of pairwise uniformity. Sometimes people say something like "sample pairwise independent bits X_{1}, \ldots, X_{n} " when they technically mean "sample pairwise uniform bits X_{1}, \ldots, X_{n}."

