
Problem Set 2 (corrected 10/24)

Pseudorandomness, Autumn 2023, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

Submission. Solutions are due Friday, October 27 at 5pm Central time. Submit your solutions through
Canvas. You are encouraged to typeset your solutions in LATEX. (Consider using Overleaf, a popular online
LATEX editor.) If you prefer, you may submit a photo of handwritten solutions instead.

The collaboration and resource policies below can also be found on the course webpage.

Collaboration. You are encouraged to collaborate with your classmates on problem sets, but you must
adhere to the following rules.

• Before discussing a problem with a classmate, you must work on the problem on your own for at least
20 minutes.

• You must ultimately write your solution on your own. While writing your solution, you may not consult
any notes that you took during a discussion with another classmate.

• In your write-up, you must list any classmates who contributed to your solution through discussion. The
fact that A contributed to B’s solution does not necessarily mean that B contributed to A’s solution.

Permitted Resources for Full Credit. Beyond discussions with me and discussions with classmates as
discussed above, you may use the course texts and any notes that might be posted in the “Course Timeline”
section of the course webpage. If you wish to receive full credit on a problem, you may not use any other
resources.

Permitted Resources for Partial Credit. If you wish, you may use outside resources (Wikipedia,
ChatGPT, Stack Exchange, research papers, etc.) to solve a problem for partial credit. If you decide to
go this route, you must make a note of which outside resources you used when you were working on each
problem. You must disclose using a resource even if it was ultimately unhelpful for solving the problem.
Furthermore, if you consult an outside resource while working on a problem, then you must not discuss that
problem with your classmates.

Let G be a d-regular undirected graph on n vertices, and let M be the transition probability matrix of G. In
class, we defined λ(G) by the formula

λ(G) := max
π

∥πM − u∥2
∥π − u∥2

,

where the maximum is over all probability vectors π ∈ Rn. We also discussed an equivalent characterization
of λ(G) in terms of PRGs. There is yet another characterization of λ(G) in terms of the eigenvalues of M .
You should read Section 2.4.3 in Vadhan’s text to learn about this “eigenvalue characterization” of λ(G). In
this problem, you will use the eigenvalue characterization of λ(G) to prove that λ(G) ≤ 1− 1/ poly(n, d), a
fact that we use in class to analyze randomized and deterministic algorithms for undirected s-t connectivity.

Problem 1 (15 points). Solve parts (1) through (5) of Problem 2.9 in Vadhan’s text.
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In class, we study standard-order ROBPs, which are the k = 1 case of the definition below.

Definition 1 (k-pass branching programs). A k-pass n-variable width-w branching program is a directed
graph in which the vertices are arranged in kn+ 1 layers, V0, . . . , Vkn, with |Vi| ≤ w for every i. There is
a designated “start vertex” v0 ∈ V0 and a designated set of “accepting vertices” Vaccept ⊆ Vkn. For every
i ∈ [kn], every vertex v ∈ Vi−1 has two outgoing edges leading to Vi labeled zero and one.

The program computes a Boolean function f : {0, 1}n → {0, 1} as follows. Given an input x ∈ {0, 1}n, we
start at v0. In step i ∈ [kn], we traverse the outgoing edge labeled xi mod n. After kn steps, we reach some
vertex vkn ∈ Vkn, and we accept (f(x) = 1) if and only if vkn ∈ Vaccept.

Example 1. Let f : {0, 1}n+logn → {0, 1} be the function f(x, i) = xi. This function can be computed by a
two-pass branching program of width n, whereas every one-pass branching program computing f has width
at least 2n.

Problem 2 (10 points). Prove that there exists an explicit ε-PRG for k-pass n-variable width-w branching
programs with seed length O(k · logw · log n+ log2 n+ log n · log(1/ε)).

Hint : Mimic the INW generator, but use Theorem 3.1.2 in the HH text (on fooling communication
protocols) to recycle the seed.
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For this problem, let us suppose that we observe a sequence of values x1, x2, . . . , xn ∈ {0, 1}t one at a time,
where n is much larger than t. After making all of these observations, we would like to know the approximate
number of distinct values that we observed, i.e., the cardinality of the set S = {x1, . . . , xn} ⊆ {0, 1}t. The
challenge is that we do not have enough space to store the entire set S, and we are not able to go back and
re-read old observations xi. (For example, maybe each time someone visits our website, we observe their IP
address xi ∈ {0, 1}t. We cannot afford to store all of the IP addresses of all of our website’s visitors, but we
would like to know approximately how many distinct IP addresses visited our website.) For simplicity, let us
assume that either |S| > 0.99 · 2t/2 or else |S| < 0.01 · 2t/2; our goal is to determine which inequality holds.
We can consider two models of randomized algorithms for this problem.

• In the coin flip model, the algorithm can toss a coin to decide what to do next. Notably, the algorithm
cannot “re-read” old coin tosses: if it wants to know the outcome of a prior coin toss, then it needs to
have written down that outcome at the time (which is costly in terms of space complexity).

• In the random oracle model, the algorithm has access to a sequence of “pre-flipped” random bits. The
algorithm can look at the i-th random bit as many times as it wants.

Here is an algorithm for our problem in the random oracle model:

1. Sample a “hash function” h : {0, 1}t → {0, 1}t/2−2 uniformly at random. (Assume t is even and t > 4.)

2. If we ever observe an xi such that h(xi) = 0t/2−2 (the all-zeroes string), then halt and accept.

3. If we complete all of our observations and we never see any xi such that h(xi) = 0t/2−2, then reject.

Since we are in the random oracle model, we do not need to actually write down the hash function h, and
hence the algorithm above only uses O(t) bits of space.

Problem 3 (10 points).

(a) Show that the algorithm described above succeeds with probability at least 95%. That is, show that if
|S| > 0.99 · 2t/2, then the algorithm accepts with probability at least 95%, and if |S| < 0.01 · 2t/2, then
the algorithm accepts with probability at most 5%. You may use the following two useful inequalities:

1− ε ≤ e−ε for any ε ∈ R
(1− ε)m ≥ 1−mε for any integer m ≥ 1 and any ε ∈ (−1,∞).

(b) Design an algorithm for this problem in the coin flip model that still succeeds with probability at least
95% and that uses only O(t2) bits of space. You may take for granted the fact that the space complexity
of the INW generator is bounded by O(s) where s is the seed length.

Caution: In general, if a space-efficient algorithm observes its random bits multiple times, then it is not
necessarily safe to use the INW generator to replace its random bits with pseudorandom bits. You will need
to provide a justification for why it is safe in this particular case.

Problem 4 (0 points). Choose a topic for your project. If you decide to study a theorem on the list of
possible project topics, then please tell me which theorem you choose. If you’re interested in doing something
else for your project, then you will need to get your plan approved; please briefly describe the proposed
project here (and we might discuss it further in person or over email).
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