
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

The nature of this course

• In this course, we will study

• The mathematical and philosophical foundations of computer science

• The ultimate limits of computation

• This course will give you powerful conceptual tools for reasoning about

computation

• There will be very little programming

• Homework and exams will be primarily proof-based

2

Who this course is designed for

• CS students, math students, and anyone who is curious

• Prerequisites:

• Experience with mathematical proofs

• CMSC 27200 or CMSC 27230 or CMSC 37000, or MATH 15900 or MATH 15910

or MATH 16300 or MATH 16310 or MATH 19900 or MATH 25500

3

Who this course is designed for

• I would like every CS student to take this course

• It’s okay if you don’t consider yourself “theory-oriented.” You belong here

• I consider it my job to give you resources so you can learn and succeed

• I also consider it my job to persuade you that complexity theory is

important, interesting, enlightening, fun, cool, and generally worthy of

your attention

4

Class participation

• Please ask questions!

• “How do we know _____?”

• “Can you remind me what _____ means?”

• “I don’t get it. Can you explain that again?”

• We are not in a hurry

5

Textbook

6

• Classic

• Popular

• High-quality

• Not free

My office hours

• Mondays, 10:30am – 12:30pm, JCL 205

• Exception: No office hours today (3/18)

• Stop by! This is the best time to discuss:

• Questions about the course material or the homework

• Concerns, complaints, or suggestions about how to improve the course

• Complexity theory topics that you’re simply curious about

7

Course staff

• Zelin Lv (TA)

• Office hours: Fridays, 1pm – 2pm, JCL 205

• Rohan Soni (TA)

• Office hours: Thursdays, 2:30pm – 3:30pm, JCL 205

• Nico Marin Gamboa (Grader)

• Loren Troan (Grader)

8

Technology

• Course webpage: https://williamhoza.com/teaching/spring2024-intro-to-complexity

• Course policies; slides

• Canvas: https://canvas.uchicago.edu/courses/55826

• Problem sets; practice exams; official solutions

• Ed: https://edstem.org/us/courses/56687/

• Discussions; announcements

• Gradescope: https://www.gradescope.com/courses/748307

• Submitting homework solutions; grades and feedback
9

https://williamhoza.com/teaching/spring2024-intro-to-complexity
https://canvas.uchicago.edu/courses/55826
https://edstem.org/us/courses/56687/
https://www.gradescope.com/courses/748307

Assessment

• There will be 6 or 7 problem sets throughout the quarter

• The first problem set is due Tuesday, March 26

• There will be a midterm exam and a final exam

10

The central question of this course:

Which problems

can be solved

through computation?

11

Examples

• The following problems can be solved through

computation:

• Addition

• Multiplication

• Shortest path

• Are there any problems that cannot be solved

through computation?

12

Impossibility proofs

• To persuasively argue that certain problems cannot be solved through

computation, we will take a mathematical approach

• We will formulate precise mathematical models

• “Problem”

• “Computation”

• “Solve”

• Then we will write rigorous mathematical proofs of impossibility

13

Which problems

can be solved

through computation?

14

Computation

• You might think of “computers” as modern

technology, but computation is ancient

• Computation can be performed by

• A human being with paper and a pencil

• A smartphone

• A steam-powered machine

• We want a mathematical model that describes

all of these and transcends any one technology
15

Human computation vs. technological

• Smartphones and laptops merely automate the process of computation

• They can compute faster and more reliably than a human being, but what

they do is essentially the same as what we do

• Consequence: We do not need to understand electronics to understand

computation

• Computation is a familiar, everyday, human act

• “Mathematical anthropology”

16

Ex: Palindromes

• Suppose a long string

of bits is written on a

blackboard

• Your job: Figure out whether the string is a “palindrome,” i.e.,

whether it is the same forwards and backwards

• What’s your approach?

17

0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0

Ex: Palindromes

• Idea: Compare and cross

off the first and last

symbols

• Repeat until we find a

mismatch or everything

is crossed off

18

0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0

Not a
palindrome

At the end of the process, where might we be standing?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: Even-numbered positions only

A: Anywhere

D: Odd-numbered positions only

B: Right half only

0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0

Local decisions

• In each step, what information do we use to decide what to do next?

1. We keep track of some information (“state”) in our mind

2. We look at the local contents of the blackboard

(one symbol is sufficient)

• We can describe the algorithm

in excruciating detail using a

“state diagram” (next slide)
19

I just crossed off a zero,
and now I’m heading over

to the right end of the
string

20

Heading right to
check for a matching

zero

Start

Heading right to
check for a matching

one

Checking for a
matching zero

Checking for a
matching one

Output NOHeading left

See a zero: cross it
off; move right

See a one: cross
it off; move right

See an uncrossed symbol: move right

See an uncrossed symbol: move right

See an uncrossed
symbol: move left

See a one

See a zero

Output YES

See a crossed-off
symbol

See a crossed-off
symbol

See a crossed-off symbol or a blank spot

The Turing machine model

• Turing machines: A mathematical model of human computation

• Basic idea: a Turing machine is any algorithm that can be described by

a state diagram similar to what we just saw

21

Turing machines

• We imagine a one-dimensional “tape” that extends infinitely to the right

• The tape is divided into “cells.” Each cell has one symbol written in it

• There is a “head” pointing at one cell of the tape

• The machine can be in one of finitely many internal “states”

22

1 1 0♢ 0 1

Turing machines

23

• In each step, the machine decides

• What to write

• Which direction to move the head (left or right)

• The new state

• The decision is based only on the current state and the observed

symbol

Transition function

• Mathematically, the update rule is specified by a transition function

𝛿: 𝑄 × Γ → 𝑄 × Γ × {L, R}

• Here 𝑄 is the set of states and Γ is the set of symbols

• 𝛿 𝑞, 𝑏 = (𝑞′, 𝑏′, 𝐷) means: “If we are in state 𝑞 and we read the

symbol 𝑏, then our new state will be 𝑞′, we will write 𝑏′ (replacing 𝑏),

and the head will move in the direction 𝐷 (L for left or R for right)”

24

𝑞 𝑞′

See a 𝑏: Replace it with 𝑏′;
move in direction 𝐷

The input to a Turing machine

• A Turing machine represents an algorithm

• The input to a Turing machine is always a finite string of symbols

25

Symbols and alphabets

• An “alphabet” Σ is any nonempty, finite set of “symbols”

• Σ = {0, 1}

• Σ = 0, 1, 0, 1

• Σ = {A, B, C, … , Z}

• Σ = { , , , , }

26

Strings

• Let Σ be an alphabet

• A string over Σ is a finite sequence of symbols from Σ

• The length of a string 𝑥 is the number of symbols, denoted 𝑥

• If 𝑛 is a nonnegative integer, then Σ𝑛 is the set of length-𝑛 strings over Σ

• Example: If Σ = {0, 1}, then

Σ3 = {000, 001, 010, 011, 100, 101, 110, 111}

27

If 𝚺 = 𝒎, then what is 𝚺𝟎 ?

Respond at PollEv.com/whoza or text “whoza” to 22333

B: Σ0 = 𝑚A: Σ0 = 0

D: Σ0 is not well-definedC: Σ0 = 1

The empty string

• If Σ is any alphabet, then |Σ0| = 1

• There is one string of length zero, called the empty string

• We use 𝜖 to denote the empty string

• Denoted "" in popular programming languages

• Σ0 = {𝜖}

28

Arbitrary-length strings

• Let Σ be an alphabet

• We define Σ∗ to be the set of strings over Σ of any finite length:

Σ∗ = ራ

𝑛=0

∞

Σ𝑛

• Example: If Σ = {0, 1}, then

Σ∗ = {𝜖, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, … }

29

Turing machine initialization

• The tape initially contains a special “start symbol” ♢, followed by the

input string 𝑤 (one symbol per cell)

• All remaining cells initially contain a special “blank symbol” ⊔

30

𝑤1 𝑤2♢ 𝑤3 ⋯ 𝑤𝑛 ⊔ ⊔ ⊔ ⊔ ⊔ ⊔

𝑞0

Turing machine initialization

• The head is initially at cell #2 (the first symbol of the input)

• The machine is initially in a special “start state” 𝑞0

31

𝑤1 𝑤2♢ 𝑤3 ⋯ 𝑤𝑛 ⊔ ⊔ ⊔ ⊔ ⊔ ⊔

𝑞0

Halting states

• There are two special “halting states,” 𝑞accept and 𝑞reject

• If the machine ever reaches 𝑞accept, this means it has accepted the input

• If the machine ever reaches 𝑞reject, this means it has rejected the input

• Either way, the computation is finished. We say that the machine halts
32

Input Turing Machine

Accept

Reject

Run forever (“loop”)

Looping

• It is also possible that the machine runs forever without ever reaching

𝑞accept or 𝑞reject

• In this case, we say that the machine does not halt, does not accept the

input, and does not reject the input

33

Input Turing Machine

Accept

Reject

Run forever (“loop”)

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: The nature of this course
	Slide 3: Who this course is designed for
	Slide 4: Who this course is designed for
	Slide 5: Class participation
	Slide 6: Textbook
	Slide 7: My office hours
	Slide 8: Course staff
	Slide 9: Technology
	Slide 10: Assessment
	Slide 11: The central question of this course: Which problems can be solved through computation?
	Slide 12: Examples
	Slide 13: Impossibility proofs
	Slide 14: Which problems can be solved through computation?
	Slide 15: Computation
	Slide 16: Human computation vs. technological
	Slide 17: Ex: Palindromes
	Slide 18: Ex: Palindromes
	Slide 19: Local decisions
	Slide 20
	Slide 21: The Turing machine model
	Slide 22: Turing machines
	Slide 23: Turing machines
	Slide 24: Transition function
	Slide 25: The input to a Turing machine
	Slide 26: Symbols and alphabets
	Slide 27: Strings
	Slide 28: The empty string
	Slide 29: Arbitrary-length strings
	Slide 30: Turing machine initialization
	Slide 31: Turing machine initialization
	Slide 32: Halting states
	Slide 33: Looping

