CMSC 28100

Introduction to
 Complexity Theory

Spring 2024
Instructor: William Hoza

Post's Correspondence Problem

- Given: a set of "dominos"

- Goal: Determine whether it is possible to generate a "match"

$$
\begin{array}{|c|c|c|c|c|}
\hline t_{i_{1}} & t_{i_{2}} & t_{i_{3}} & t_{i_{4}} & t_{i_{5}} \\
b_{i_{1}} & b_{i_{2}} & b_{i_{3}} & b_{i_{4}} & b_{i_{5}} \\
\hline
\end{array}
$$

in which the sequence of symbols on top equals the sequence of symbols on the bottom

- Using the same domino multiple times is permitted

Post's Correspondence Problem is undecidable

- Define

$$
\operatorname{PCP}=\left\{\left\langle\Lambda, t_{1}, \ldots, t_{k}, b_{1}, \ldots, b_{k}\right\rangle: \exists i_{1}, \ldots, i_{n} \text { such that } t_{i_{1}} \cdots t_{i_{n}}=b_{i_{1}} \cdots b_{i_{n}}\right\}
$$

Theorem: PCP is undecidable

- Proof outline:
- Step 1: Show that a modified version ("MPCP") is undecidable by reduction from HALT
- Step 2: Show that PCP is undecidable by reduction from MPCP

Modified PCP

$\operatorname{MPCP}=\left\{\left\langle\Lambda, t_{1}, \ldots, t_{k}, b_{1}, \ldots, b_{k}\right\rangle: \exists i_{1}, \ldots, i_{n}\right.$ such that $\left.t_{1} t_{i_{1}} \cdots t_{i_{n}}=b_{1} b_{i_{1}} \cdots b_{i_{n}}\right\}$

- The difference between PCP and MPCP: In MPCP, matches must start with the
first domino

Reduction from HALT to MPCP

- We produce the following dominos:

Reduction is computable

- $\begin{gathered}\epsilon \\ \diamond q_{0} w \sqcup \#\end{gathered}$ \square

\square

```
qreject #
\({ }_{\epsilon}^{9 \text { reject }}{ }^{\#}\)
```

, and

- $\begin{gathered}q b \\ b^{\prime} q^{\prime}\end{gathered}$ for every $q, b, q^{\prime}, b^{\prime}$ such that $\delta(q, b)=\left(q^{\prime}, b^{\prime}, \mathrm{R}\right)$ and $q \notin\left\{q_{\mathrm{accept}}, q_{\mathrm{reject}}\right\}$
- $\begin{gathered}a q b \\ q^{\prime} a b^{\prime}\end{gathered}$ for every $q, b, q^{\prime}, b^{\prime}, a$ such that $\delta(q, b)=\left(q^{\prime}, b^{\prime}, \mathrm{L}\right)$ and $q \notin\left\{q_{\text {accept }}, q_{\text {reject }}\right\}$
- | b |
| :---: |
| b |, | $b q$ |
| :---: |
| q | , and | $q b$ |
| :---: |
| q | for every $b \in \Gamma$ and $q \in\left\{q_{\text {accept }}, q_{\text {reject }}\right\}$

YES maps to YES

- Suppose M halts on w
- Under this assumption, we showed last time how to construct a match
- The construction was based on the computation history of M on w :

ϵ $\diamond q_{0} w \sqcup \#$	$\begin{gathered} C_{0}^{\prime} \sqcup \\ C_{1}^{\prime} \end{gathered}$	$\begin{gathered} \text { \# } \\ ப \text { \# } \end{gathered}$	$\begin{gathered} C_{1}^{\prime} \sqcup \\ C_{2}^{\prime} \end{gathered}$	$\begin{gathered} \# \\ ப \# \end{gathered}$		$\#$ ப \#	$C_{T-1}^{\prime} \sqcup$ C_{T}^{\prime}	\#	H_{0} H_{1}	\#	H_{1} H_{2}	\#	\cdots	\#	H_{n-1} H_{n}	\#	$H_{n} \#$ ϵ

NO maps to NO

- Suppose M loops on w. Let $C_{0}, C_{1}, C_{2}, \ldots$ be the computation history of M on w (an infinite sequence of configurations)
- Assume, for the sake of contradiction, that there is a match
- We will show by induction that for every $i \in \mathbb{N}$, there exist $k, r \in \mathbb{N}$ and $x \in \Lambda^{*}$ such that $k \geq i$, there are at least k dominos in the match, and the first k dominos form the following super-domino: \square
- Base case $i=0$: By definition of MPCP, the match must start with

NO maps to NO

- Inductive step: Assume that
- Subsequent dominos must

Respond at PollEv.com/whoza or text "whoza" to 22333

- Exercise: There are only two possible ways to do this, namely

	followed by either	\#	or	-\#

- Either way, the inductive step is complete
- Consequence: The match is infinitely long, a contradiction

NO maps to NO

- This completes the proof that MPCP is undecidable
- We designed a mapping reduction from HALT to MPCP
- If MPCP were decidable, then HALT would be decidable too

Post's Correspondence Problem is undecidable

- Define

$$
\operatorname{PCP}=\left\{\left\langle\Sigma, t_{1}, \ldots, t_{k}, b_{1}, \ldots, b_{k}\right\rangle: \exists i_{1}, \ldots, i_{n} \text { such that } t_{i_{1}} \cdots t_{i_{n}}=b_{i_{1}} \cdots b_{i_{n}}\right\}
$$

Theorem: PCP is undecidable

- Proof outline:
- Step 1: Show that a modified version, "MPCP," is undecidable by reduction from HALT
- Step 2: Show that PCP is undecidable by reduction from MPCP

Reduction from MPCP to PCP

- For each string $u=u_{1} u_{2} \ldots u_{n}$, define $\bar{u}=u_{1} \star u_{2} \star \cdots \star u_{n}$
- Reduction:
- Computable \mathbb{N}

YES maps to YES

- Suppose the MPCP instance has a match

t_{1}	$t_{i_{1}}$	$t_{i_{2}}$	$t_{i_{3}}$	$t_{i_{4}}$
b_{1}	$b_{i_{1}}$	$b_{i_{2}}$	$b_{i_{3}}$	$b_{i_{4}}$

- Then the constructed PCP instance also has a match:

NO maps to NO

- We prove the contrapositive. Suppose the constructed PCP instance has a match
- Must start with \begin{tabular}{|c}

$* \overline{t_{1}}$
${\multirow{4}{}}{ }$

\end{tabular}\(}

{\hline} \end{array}\) because that's the only domino with the same first symbol on top and on bottom

- Delete all the \star symbols from the match, and we get a match for the original MPCP instance

Using reductions to prove undecidability

- OBJECTION: "I don’t like mapping reductions. I preferred our first few undecidability proofs, where we did proofs by contradiction and the concept of a reduction was implicit."
- RESPONSE 1: Mapping reductions help us to reason clearly about undecidability
- RESPONSE 2: You should get comfortable with the concept of a mapping reduction now in preparation for what will come later
- The concept might feel "optional" now, but later it will be essential

The "emptiness

- Let $\mathrm{E}_{\mathrm{TM}}=\{\langle M\rangle$: there do
A: Simulate M on w, and if it ever
B: Simulate M on w and construct
halts, accept
C: Modify the transition function
of M to construct $\left\langle M^{\prime}\right\rangle$

D: There does not exist an algorithm that computes f

- Claim: E_{TM} is undecidable

Respond at PollEv.com/whoza or text "whoza" to 22333

- Proof: We will design a mapping reduction from $\overline{\text { HALT }}$ to E_{TM}
- Let $f(\langle M, w\rangle)=\left\langle M^{\prime}\right\rangle$, where M^{\prime} is a TM that does the following on input x :

1. Simulate M on w
2. If M ever halts, accept

- YES maps to YES

NO maps to NO
Computable

Which languages are undecidable?

Some more undecidable problems

- We have seen several interesting examples of undecidable problems
- To wrap up our discussion of undecidability, l'll mention a few more examples of undecidable problems - but we won't do the proofs
- (This material will not be on problem sets or exams)

Hilbert's $10^{\text {th }}$ problem

- Problem: Given a polynomial equation with integer coefficients such as

$$
x^{2}+3 x z+y^{3}+z^{2} x^{2}=4 x y^{2}+6 y z+2
$$

determine whether there is an integer solution

- Let HILBERT10 $=\{\langle p, q\rangle: \exists \vec{x}$ such that $p(\vec{x})=q(\vec{x})\}$

Theorem: HILBERT10 is undecidable

Derivatives vs. Integrals

- Recall: Calculus
- Computing derivatives is mechanistic
- Sum rule $(f+g)^{\prime}=f^{\prime}+g^{\prime}$, product rule $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$, chain rule $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) \cdot g^{\prime}$, etc.
- In contrast, computing integrals seems to involve creativity
- u-substitutions, integration by parts, etc.

Elementary functions

- Definition: A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is elementary if it can be defined by a formula using addition, multiplication, rational constants, powers, exponentials, logarithms, trigonometric functions, and π
- E.g. $f(x)=x \cdot \sin \left(x^{4}\right)-3 \pi \cdot e^{e^{\sqrt{x}}}$

Integration is undecidable

- Fact: There exist elementary functions that do not have elementary antiderivatives, such as $f(x)=e^{-x^{2}}$
- Let INTEGRABLE $=\{\langle f\rangle: f$ is an elementary function with an elementary antiderivative\}

Theorem: INTEGRABLE is undecidable

