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Post’s Correspondence Problem

• Given: a set of “dominos”

• Goal: Determine whether it is possible to generate a “match”

in which the sequence of symbols on top equals the sequence of 

symbols on the bottom

• Using the same domino multiple times is permitted
2

𝑡1
𝑏1

𝑡2
𝑏2

𝑡3
𝑏3

𝑡𝑘
𝑏𝑘

⋯

𝑡𝑖1
𝑏𝑖1

𝑡𝑖2
𝑏𝑖2

𝑡𝑖3
𝑏𝑖3

𝑡𝑖4
𝑏𝑖4

𝑡𝑖5
𝑏𝑖5

𝑡𝑖𝑛
𝑏𝑖𝑛

⋯



Post’s Correspondence Problem is undecidable

• Define

PCP = { Λ, 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘 ∶ ∃𝑖1, … , 𝑖𝑛 such that 𝑡𝑖1 ⋯𝑡𝑖𝑛 = 𝑏𝑖1 ⋯𝑏𝑖𝑛}

• Proof outline:

• Step 1: Show that a modified version (“MPCP”) is undecidable by reduction from HALT

• Step 2: Show that PCP is undecidable by reduction from MPCP
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Theorem: PCP is undecidable



Modified PCP

MPCP = { Λ, 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘 ∶ ∃𝑖1, … , 𝑖𝑛 such that 𝑡1𝑡𝑖1 ⋯𝑡𝑖𝑛 = 𝑏1𝑏𝑖1 ⋯𝑏𝑖𝑛}

• The difference between PCP and MPCP: In MPCP, matches must start with the 

first domino

4



Reduction from HALT to MPCP

• We produce the following dominos:

• , ,            ,                  , and

• for every 𝑞, 𝑏, 𝑞′, 𝑏′ such that 𝛿 𝑞, 𝑏 = (𝑞′, 𝑏′, R) and 𝑞 ∉ 𝑞accept, 𝑞reject

• for every 𝑞, 𝑏, 𝑞′, 𝑏′, 𝑎 such that 𝛿 𝑞, 𝑏 = (𝑞′, 𝑏′, L) and 𝑞 ∉ 𝑞accept, 𝑞reject

• , , and  for every 𝑏 ∈ Γ and 𝑞 ∈ 𝑞accept, 𝑞reject
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YES maps to YES

• Suppose 𝑀 halts on 𝑤

• Under this assumption, we showed last time how to construct a match

• The construction was based on the computation history of 𝑀 on 𝑤:
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NO maps to NO

• Suppose 𝑀 loops on 𝑤. Let 𝐶0, 𝐶1, 𝐶2, … be the computation history of 𝑀

on 𝑤 (an infinite sequence of configurations)

• Assume, for the sake of contradiction, that there is a match

• We will show by induction that for every 𝑖 ∈ ℕ, there exist 𝑘, 𝑟 ∈ ℕ and 

𝑥 ∈ Λ∗ such that 𝑘 ≥ 𝑖, there are at least 𝑘 dominos in the match, and the 

first 𝑘 dominos form the following super-domino:

• Base case 𝑖 = 0: By definition of MPCP, the match must start with
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𝜖
♢𝑞0𝑤 ⊔ #

𝑥
𝑥𝐶𝑖 ⊔
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𝑥
𝑥𝐶𝑖 ⊔

𝑟 #

NO maps to NO

• Inductive step: Assume that the first 𝑘 dominos in the match form 

• Subsequent dominos must spell out 𝐶𝑖 ⊔
𝑟 # on top

• Exercise: There are only two possible ways to do this, namely

followed by either  or

• Either way, the inductive step is complete

• Consequence: The match is infinitely long, a contradiction
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When we are computing 𝑓 𝑀,𝑤 , how do we know
whether there is a match?

Respond at PollEv.com/whoza or text “whoza” to 22333 

B: We inspect the transition
function of 𝑀

A: We simulate 𝑀 on 𝑤 and
observe what happens

D: We do not know whether there
is a match, and that’s an issue

C: We do not know whether there
is a match, and that’s okay



NO maps to NO

• This completes the proof that MPCP is undecidable

• We designed a mapping reduction from HALT to MPCP

• If MPCP were decidable, then HALT would be decidable too
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Post’s Correspondence Problem is undecidable

• Define

PCP = { Σ, 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘 ∶ ∃𝑖1, … , 𝑖𝑛 such that 𝑡𝑖1 ⋯𝑡𝑖𝑛 = 𝑏𝑖1 ⋯𝑏𝑖𝑛}

• Proof outline:

• Step 1: Show that a modified version, “MPCP,” is undecidable by reduction from HALT

• Step 2: Show that PCP is undecidable by reduction from MPCP
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Theorem: PCP is undecidable



Reduction from MPCP to PCP

• For each string 𝑢 = 𝑢1𝑢2…𝑢𝑛, define 𝑢 = 𝑢1 ⋆ 𝑢2 ⋆ ⋯⋆ 𝑢𝑛

• Reduction:

𝑓 =

• Computable 
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YES maps to YES

• Suppose the MPCP instance has a match

• Then the constructed PCP instance also has a match:
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NO maps to NO

• We prove the contrapositive. Suppose the constructed PCP instance 

has a match

• Must start with because that’s the only domino with the same 

first symbol on top and on bottom

• Delete all the ⋆ symbols from the match, and we get a match for the 

original MPCP instance
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Using reductions to prove undecidability

• OBJECTION: “I don’t like mapping reductions. I preferred our first few 

undecidability proofs, where we did proofs by contradiction and the concept of a 

reduction was implicit.”

• RESPONSE 1: Mapping reductions help us to reason clearly about undecidability

• RESPONSE 2: You should get comfortable with the concept of a mapping reduction 

now in preparation for what will come later

• The concept might feel “optional” now, but later it will be essential
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The “emptiness problem” 

• Let ETM = 𝑀 ∶ there does not exist 𝑤 such that 𝑀 accepts 𝑤

• Claim: ETM is undecidable

• Proof: We will design a mapping reduction from HALT to ETM

• Let 𝑓 𝑀,𝑤 = 𝑀′ , where 𝑀′ is a TM that does the following on input 𝑥:

1. Simulate 𝑀 on 𝑤

2. If 𝑀 ever halts, accept

• YES maps to YES NO maps to NO 
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Given ⟨𝑀,𝑤⟩, how would we compute 𝑓 𝑀,𝑤 ?

Respond at PollEv.com/whoza or text “whoza” to 22333 

B: Simulate 𝑀 on 𝑤 and construct
𝑀′  based on simulation results

A: Simulate 𝑀 on 𝑤, and if it ever
halts, accept

D: There does not exist an
algorithm that computes 𝑓

C: Modify the transition function
of 𝑀 to construct 𝑀′

Computable 



Which languages are undecidable?
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Some more undecidable problems

• We have seen several interesting examples of undecidable problems

• To wrap up our discussion of undecidability, I’ll mention a few more 

examples of undecidable problems – but we won’t do the proofs

• (This material will not be on problem sets or exams)
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Hilbert’s 10th problem

• Problem: Given a polynomial equation with integer coefficients such as 

𝑥2 + 3𝑥𝑧 + 𝑦3 + 𝑧2𝑥2 = 4𝑥𝑦2 + 6𝑦𝑧 + 2,

determine whether there is an integer solution

• Let HILBERT10 = { 𝑝, 𝑞 ∶ ∃ Ԧ𝑥 such that 𝑝 Ԧ𝑥 = 𝑞 Ԧ𝑥 }
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Theorem: HILBERT10 is undecidable



Derivatives vs. Integrals

• Recall: Calculus

• Computing derivatives is mechanistic

• Sum rule 𝑓 + 𝑔 ′ = 𝑓′ + 𝑔′, product rule 𝑓𝑔 ′ = 𝑓′𝑔 + 𝑓𝑔′, chain rule 

𝑓 ∘ 𝑔 ′ = 𝑓′ ∘ 𝑔 ⋅ 𝑔′, etc.

• In contrast, computing integrals seems to involve creativity

• 𝑢-substitutions, integration by parts, etc.
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Elementary functions

• Definition: A function 𝑓:ℝ → ℝ is elementary if it can be defined by a 

formula using addition, multiplication, rational constants, powers, 

exponentials, logarithms, trigonometric functions, and 𝜋

• E.g. 𝑓 𝑥 = 𝑥 ⋅ sin 𝑥4 − 3𝜋 ⋅ 𝑒𝑒
𝑥
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Integration is undecidable

• Fact: There exist elementary functions that do not have elementary 

antiderivatives, such as 𝑓 𝑥 = 𝑒−𝑥
2

• Let INTEGRABLE = { 𝑓 ∶ 𝑓 is an elementary function with an

elementary antiderivative}
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Theorem: INTEGRABLE is undecidable
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