CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Midterm exam

* Midterm exam will be in class on Wednesday, April 17

* To prepare for the midterm, you only need to study the material up to

this point

* The midterm will be about decidability and undecidability

Which problems
can be solved

through computation?

Decompositions into squares

 Let SQUARES = {xx : x € {0,1}"}

* We say that a string w € {0, 1}* can be decomposed into squares if there

exist y1, V>, ..., Yk € SQUARES such thatw = y,y, ... Vi
* Example: 00100111 = (001 001)(1 1)

 Example: 1001 cannot be decomposed into squares

Decompositions into squares

- Let DECOMPOSABLE-INTO-SQUARES = {w € {0,1}* : w can be

decomposed into squares}

< Is DECOMPOSABLE-INTO-SQUARES decidable?

< A: Yes >< B: No
) D: It’s not a language, so the
C: It depends on the encoding . g’gu &
question doesn’t make sense

Respond at PollEv.com/whoza or text “whoza” to 22333

VvV V V

Decompositions into squares

* Let DECOMPOSABLE-INTO-SQUARES = {w € {0,1}" : w can be

decomposed into squares}
* Claim: DECOMPOSABLE-INTO-SQUARES is decidable

* Proof sketch: Given w € {0, 1}*, try all possible decompositions of w

into substrings: w = y;y, ... Vi
* Check whether y; € SQUARES for each i

* If we find a decomposition into squares, accept; otherwise, reject.

Decompositions into squares

* DECOMPOSABLE-INTO-SQUARES is decidable

* So... Can we actually decide it?

Our algorithm is so slow that it’s worthless

* Can the following string be decomposed into squares?

00110011001010011000000010100110000001111171710111717111010110101110100
100100111010010010011010101011111110001011111110001010011010100110101

* Checking all possible decompositions would take longer than a lifetime

* One begins to feel that DECOMPOSABLE-INTO-SQUARES might as well be

undecidable...

Which problems
can be solved

through computation?

Refining our model

e The mathematical model we have studied so far: Decidable vs.

undecidable

* Now we will refine our model to take into account the fact that in real

life, we only have a limited amount of time (and other resources)

e “Complexity theory”

10

Analogy: Gravity

* In an introductory physics class, we might model

gravity as a constant downward force of 9.8 N/kg

* In a more advanced physics class, we might use a
more sophisticated model of gravity:

m1 'mz

F=aG

r2 \

—
- = -~

-
~
~————’

11

Theory vs. practice

* Disclaimer: Our theoretical model will still not be perfectly accurate!

* Sometimes, we might categorize a problem as “tractable” even though

it is not actually “solvable in practice”

e Other times, we might categorize a problem as “intractable” even

though it is actually “solvable in practice”

12

Theory vs. practice

* Physics analogy: Newton’s universal law of gravitation

mqi-mo

(F =G -

") is a fantastic approximation in many

cases, but it does not correctly predict Mercury’s motion around the sun!

III

» “ ..all models are wrong, but some are useful.” —George Box

* Even though our model of tractability will not be completely accurate, it

will still give us real insights into the nature of computation

13

Time complexity

* Let M be a Turing machine with input alphabet X
* The time complexity of M is a function 7,: N — N defined as follows:
Ty(n) = max (running time of M on w)
w n

* We are focusing on the worst-case n-symbol input

14

Deciding a language in time T

* Let L be alanguage and let T: N — N be a function

* Definition: We say that L can be decided in time T if there exists a Turing
machine M such that

e M decides L, and

* If we let T;: N = N be the time complexity of M, then for every n, we have

Ty(n) <T(n)

15

Scaling behavior

* We will mainly focus on the limiting behavior of T(n) asn — o

* How “quickly” does the time complexity T(n) increase when we

increase the input length n?

16

Asymptotic analysis

Asymptotic analysis

* Two possible time complexities:

Tl(n) — 3n2 ~+ 14‘

T,(n) = 2n? + 64n + |\/n|
* When n is large, the leading C - n® term dominates

* We will ignore the low-order terms and the leading coefficient C

* We focus on the n? part (“quadratic time”)

18

Big-O notation

* 3n2 4+ 14 and 2n? + 64n + [y/n] are both “0(n?)”
* More generally, let T, f: N — N be any two functions

* We say that T is O(f) if there exist C,n, € N such that for every n > n,,
we have T(n) < C - f(n)

* Notation: T € O(f) orT < O(f) orT = O(f)

19

Big-O notation examples

e 3n?% + 14 is 0(n?)
e 3n% + 14 is 0(n? + n)
e 3n? + 14 is 0(n?)

e 3n?% + 14 is not 0(n'?)

20

Big-{) and big-0

* LetT, f:N — N be any two functions

* We say that T is (.(f) if there exist ¢ € (0,1) and n, € N such that

foreveryn > n,, wehaveT(n) = c- f(n)

* Wesaythat T isO(f) if TisO(f) and T is Q(f)

21

Big-{) and big-® examples

e 0.1n% + 14 is Q(n?) and Q(n), but not Q(n3)

e 0.1n% + 14 is ®(n?) and O(n? + 2n'*), but not O(n)

< Let T(n) = 234, Which of the following statements is false? >

< A: T(n) is Q(2") >< B: T(n) is 20 >
< C: T(n) is ©(23™) >< D:T(n) is 0(2") >

Respond at PollEv.com/whoza or text “whoza” to 22333

22

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Midterm exam
	Slide 3: Which problems can be solved through computation?
	Slide 4: Decompositions into squares
	Slide 5: Decompositions into squares
	Slide 6: Decompositions into squares
	Slide 7: Decompositions into squares
	Slide 8: Our algorithm is so slow that it’s worthless
	Slide 9: Which problems can be solved through computation?
	Slide 10: Refining our model
	Slide 11: Analogy: Gravity
	Slide 12: Theory vs. practice
	Slide 13: Theory vs. practice
	Slide 14: Time complexity
	Slide 15: Deciding a language in time cap T
	Slide 16: Scaling behavior
	Slide 17: Asymptotic analysis
	Slide 18: Asymptotic analysis
	Slide 19: Big-cap O notation
	Slide 20: Big-cap O notation examples
	Slide 21: Big-cap omega and big-cap theta
	Slide 22: Big-cap omega and big-cap theta examples

