
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Midterm exam

• Midterm exam will be in class on Wednesday, April 17

• To prepare for the midterm, you only need to study the material up to

this point

• The midterm will be about decidability and undecidability

2

Which problems

can be solved

through computation?

3

Decompositions into squares

• Let SQUARES = 𝑥𝑥 ∶ 𝑥 ∈ 0, 1 ∗

• We say that a string 𝑤 ∈ {0, 1}∗ can be decomposed into squares if there

exist 𝑦1, 𝑦2, … , 𝑦𝑘 ∈ SQUARES such that 𝑤 = 𝑦1𝑦2…𝑦𝑘

• Example: 00100111 = 001 001 1 1

• Example: 1001 cannot be decomposed into squares

4

Decompositions into squares

• Let DECOMPOSABLE-INTO-SQUARES = {

}

𝑤 ∈ 0, 1 ∗ ∶ 𝑤 can be

decomposed into squares

5

Is DECOMPOSABLE-INTO-SQUARES decidable?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: It depends on the encoding

B: No

D: It’s not a language, so the
question doesn’t make sense

A: Yes

Decompositions into squares

• Let DECOMPOSABLE-INTO-SQUARES = {

}

𝑤 ∈ 0, 1 ∗ ∶ 𝑤 can be

decomposed into squares

• Claim: DECOMPOSABLE-INTO-SQUARES is decidable

• Proof sketch: Given 𝑤 ∈ 0, 1 ∗, try all possible decompositions of 𝑤

into substrings: 𝑤 = 𝑦1𝑦2…𝑦𝑘

• Check whether 𝑦𝑖 ∈ SQUARES for each 𝑖

• If we find a decomposition into squares, accept; otherwise, reject.

6

Decompositions into squares

• DECOMPOSABLE-INTO-SQUARES is decidable

• So… Can we actually decide it?

7

Our algorithm is so slow that it’s worthless

• Can the following string be decomposed into squares?

001100110010100110000000101001100000011111111011111111010110101110100

100100111010010010011010101011111110001011111110001010011010100110101

• Checking all possible decompositions would take longer than a lifetime

• One begins to feel that DECOMPOSABLE-INTO-SQUARES might as well be

undecidable…

8

Which problems

can be solved

through computation?

9

Refining our model

• The mathematical model we have studied so far: Decidable vs.

undecidable

• Now we will refine our model to take into account the fact that in real

life, we only have a limited amount of time (and other resources)

• “Complexity theory”

10

Analogy: Gravity

• In an introductory physics class, we might model

gravity as a constant downward force of 9.8 N/kg

• In a more advanced physics class, we might use a

more sophisticated model of gravity:

𝐹 = 𝐺 ⋅
𝑚1 ⋅ 𝑚2

𝑟2

11

Theory vs. practice

• Disclaimer: Our theoretical model will still not be perfectly accurate!

• Sometimes, we might categorize a problem as “tractable” even though

it is not actually “solvable in practice”

• Other times, we might categorize a problem as “intractable” even

though it is actually “solvable in practice”

12

Theory vs. practice

• Physics analogy: Newton’s universal law of gravitation

(𝐹 = 𝐺 ⋅
𝑚1⋅𝑚2

𝑟2
) is a fantastic approximation in many

cases, but it does not correctly predict Mercury’s motion around the sun!

• “…all models are wrong, but some are useful.” –George Box

• Even though our model of tractability will not be completely accurate, it

will still give us real insights into the nature of computation

13

Time complexity

• Let 𝑀 be a Turing machine with input alphabet Σ

• The time complexity of 𝑀 is a function 𝑇𝑀: ℕ → ℕ defined as follows:

𝑇𝑀 𝑛 = max
𝑤∈Σ𝑛

running time of 𝑀 on 𝑤

• We are focusing on the worst-case 𝑛-symbol input

14

Deciding a language in time 𝑇

• Let 𝐿 be a language and let 𝑇:ℕ → ℕ be a function

• Definition: We say that 𝐿 can be decided in time 𝑇 if there exists a Turing

machine 𝑀 such that

• 𝑀 decides 𝐿, and

• If we let 𝑇𝑀: ℕ → ℕ be the time complexity of 𝑀, then for every 𝑛, we have

𝑇𝑀 𝑛 ≤ 𝑇 𝑛

15

Scaling behavior

• We will mainly focus on the limiting behavior of 𝑇 𝑛 as 𝑛 → ∞

• How “quickly” does the time complexity 𝑇 𝑛 increase when we

increase the input length 𝑛?

16

Asymptotic analysis

17

Asymptotic analysis

• Two possible time complexities:

𝑇1 𝑛 = 3𝑛2 + 14

𝑇2 𝑛 = 2𝑛2 + 64𝑛 + 𝑛

• When 𝑛 is large, the leading 𝐶 ⋅ 𝑛2 term dominates

• We will ignore the low-order terms and the leading coefficient 𝐶

• We focus on the 𝑛2 part (“quadratic time”)

18

Big-𝑂 notation

• 3𝑛2 + 14 and 2𝑛2 + 64𝑛 + 𝑛 are both “𝑂 𝑛2 ”

• More generally, let 𝑇, 𝑓: ℕ → ℕ be any two functions

• We say that 𝑇 is 𝑂 𝑓 if there exist 𝐶, 𝑛∗ ∈ ℕ such that for every 𝑛 > 𝑛∗,

we have 𝑇 𝑛 ≤ 𝐶 ⋅ 𝑓 𝑛

• Notation: 𝑇 ∈ 𝑂 𝑓 or 𝑇 ≤ 𝑂 𝑓 or 𝑇 = 𝑂 𝑓

19

Big-𝑂 notation examples

• 3𝑛2 + 14 is 𝑂 𝑛2

• 3𝑛2 + 14 is 𝑂 𝑛2 + 𝑛

• 3𝑛2 + 14 is 𝑂 𝑛3

• 3𝑛2 + 14 is not 𝑂 𝑛1.9

20

Big-Ω and big-Θ

• Let 𝑇, 𝑓: ℕ → ℕ be any two functions

• We say that 𝑇 is Ω 𝑓 if there exist 𝑐 ∈ 0, 1 and 𝑛∗ ∈ ℕ such that

for every 𝑛 > 𝑛∗, we have 𝑇 𝑛 ≥ 𝑐 ⋅ 𝑓 𝑛

• We say that 𝑇 is Θ 𝑓 if 𝑇 is 𝑂 𝑓 and 𝑇 is Ω 𝑓

21

Big-Ω and big-Θ examples

• 0.1𝑛2 + 14 is Ω 𝑛2 and Ω 𝑛 , but not Ω 𝑛3

• 0.1𝑛2 + 14 is Θ 𝑛2 and Θ 𝑛2 + 2𝑛1.4 , but not Θ 𝑛

22

Let 𝑇 𝑛 = 23𝑛+4. Which of the following statements is false?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: 𝑇(𝑛) is Θ 23𝑛

A: 𝑇 𝑛 is Ω 2𝑛 B: 𝑇 𝑛 is 2Θ 𝑛

D: 𝑇 𝑛 is 𝑂 2𝑛

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Midterm exam
	Slide 3: Which problems can be solved through computation?
	Slide 4: Decompositions into squares
	Slide 5: Decompositions into squares
	Slide 6: Decompositions into squares
	Slide 7: Decompositions into squares
	Slide 8: Our algorithm is so slow that it’s worthless
	Slide 9: Which problems can be solved through computation?
	Slide 10: Refining our model
	Slide 11: Analogy: Gravity
	Slide 12: Theory vs. practice
	Slide 13: Theory vs. practice
	Slide 14: Time complexity
	Slide 15: Deciding a language in time cap T
	Slide 16: Scaling behavior
	Slide 17: Asymptotic analysis
	Slide 18: Asymptotic analysis
	Slide 19: Big-cap O notation
	Slide 20: Big-cap O notation examples
	Slide 21: Big-cap omega and big-cap theta
	Slide 22: Big-cap omega and big-cap theta examples

