CMSC 28100

Introduction to
 Complexity Theory

Spring 2024
Instructor: William Hoza

Midterm exam

- Midterm exam will be in class on Wednesday, April 17
- To prepare for the midterm, you only need to study the material up to this point
- The midterm will be about decidability and undecidability

Which problems

can be solved
through computation?

Decompositions into squares

- Let SQUARES $=\left\{x x: x \in\{0,1\}^{*}\right\}$
- We say that a string $w \in\{0,1\}^{*}$ can be decomposed into squares if there exist $y_{1}, y_{2}, \ldots, y_{k} \in \operatorname{SQUARES}$ such that $w=y_{1} y_{2} \ldots y_{k}$
- Example: $00100111=(001001)(11)$
- Example: 1001 cannot be decomposed into squares

Decompositions into squares

- Let DECOMPOSABLE-INTO-SQUARES $=\left\{w \in\{0,1\}^{*}: w\right.$ can be decomposed into squares\}

Decompositions into squares

- Let DECOMPOSABLE-INTO-SQUARES $=\left\{w \in\{0,1\}^{*}: w\right.$ can be decomposed into squares\}
- Claim: DECOMPOSABLE-INTO-SQUARES is decidable
- Proof sketch: Given $w \in\{0,1\}^{*}$, try all possible decompositions of w into substrings: $w=y_{1} y_{2} \ldots y_{k}$
- Check whether $y_{i} \in$ SQUARES for each i
- If we find a decomposition into squares, accept; otherwise, reject.

Decompositions into squares

- DECOMPOSABLE-INTO-SQUARES is decidable
- So... Can we actually decide it?

Our algorithm is so slow that it's worthless

- Can the following string be decomposed into squares?

001100110010100110000000101001100000011111111011111111010110101110100 100100111010010010011010101011111110001011111110001010011010100110101

- Checking all possible decompositions would take longer than a lifetime
- One begins to feel that DECOMPOSABLE-INTO-SQUARES might as well be undecidable...

Which problems

can be solved

through computation?

Refining our model

- The mathematical model we have studied so far: Decidable vs. undecidable
- Now we will refine our model to take into account the fact that in real life, we only have a limited amount of time (and other resources)
- "Complexity theory"

Analogy: Gravity

- In an introductory physics class, we might model gravity as a constant downward force of $9.8 \mathrm{~N} / \mathrm{kg}$
- In a more advanced physics class, we might use a more sophisticated model of gravity:

$$
F=G \cdot \frac{m_{1} \cdot m_{2}}{r^{2}}
$$

Theory vs. practice

- Disclaimer: Our theoretical model will still not be perfectly accurate!
- Sometimes, we might categorize a problem as "tractable" even though it is not actually "solvable in practice"
- Other times, we might categorize a problem as "intractable" even though it is actually "solvable in practice"

Theory vs. practice

- Physics analogy: Newton's universal law of gravitation ($F=G \cdot \frac{m_{1} \cdot m_{2}}{r^{2}}$) is a fantastic approximation in many cases, but it does not correctly predict Mercury's motion around the sun!
- "...all models are wrong, but some are useful." -George Box
- Even though our model of tractability will not be completely accurate, it will still give us real insights into the nature of computation

Time complexity

- Let M be a Turing machine with input alphabet Σ
- The time complexity of M is a function $T_{M}: \mathbb{N} \rightarrow \mathbb{N}$ defined as follows:

$$
T_{M}(n)=\max _{w \in \Sigma^{n}}(\text { running time of } M \text { on } w)
$$

- We are focusing on the worst-case n-symbol input

Deciding a language in time T

- Let L be a language and let $T: \mathbb{N} \rightarrow \mathbb{N}$ be a function
- Definition: We say that L can be decided in time T if there exists a Turing machine M such that
- M decides L, and
- If we let $T_{M}: \mathbb{N} \rightarrow \mathbb{N}$ be the time complexity of M, then for every n, we have $T_{M}(n) \leq T(n)$

Scaling behavior

- We will mainly focus on the limiting behavior of $T(n)$ as $n \rightarrow \infty$
- How "quickly" does the time complexity $T(n)$ increase when we increase the input length n ?

Asymptotic analysis

Asymptotic analysis

- Two possible time complexities:

$$
\begin{aligned}
& T_{1}(n)=3 n^{2}+14 \\
& T_{2}(n)=2 n^{2}+64 n+\lceil\sqrt{n}\rceil
\end{aligned}
$$

- When n is large, the leading $C \cdot n^{2}$ term dominates
- We will ignore the low-order terms and the leading coefficient C
- We focus on the n^{2} part ("quadratic time")

Big- O notation

- $3 n^{2}+14$ and $2 n^{2}+64 n+\lceil\sqrt{n}\rceil$ are both " $O\left(n^{2}\right)$ "
- More generally, let $T, f: \mathbb{N} \rightarrow \mathbb{N}$ be any two functions
- We say that T is $O(f)$ if there exist $C, n_{*} \in \mathbb{N}$ such that for every $n>n_{*}$, we have $T(n) \leq C \cdot f(n)$
- Notation: $T \in O(f)$ or $T \leq O(f)$ or $T=O(f)$

Big-0 notation examples

- $3 n^{2}+14$ is $O\left(n^{2}\right)$
- $3 n^{2}+14$ is $O\left(n^{2}+n\right)$
- $3 n^{2}+14$ is $O\left(n^{3}\right)$
- $3 n^{2}+14$ is not $O\left(n^{1.9}\right)$

Big- Ω and big- Θ

- Let $T, f: \mathbb{N} \rightarrow \mathbb{N}$ be any two functions
- We say that T is $\Omega(f)$ if there exist $c \in(0,1)$ and $n_{*} \in \mathbb{N}$ such that for every $n>n_{*}$, we have $T(n) \geq c \cdot f(n)$
- We say that T is $\Theta(f)$ if T is $O(f)$ and T is $\Omega(f)$

Big $-\Omega$ and big- Θ examples

- $0.1 n^{2}+14$ is $\Omega\left(n^{2}\right)$ and $\Omega(n)$, but not $\Omega\left(n^{3}\right)$
- $0.1 n^{2}+14$ is $\Theta\left(n^{2}\right)$ and $\Theta\left(n^{2}+2 n^{1.4}\right)$, but not $\Theta(n)$

