CMSC 28100

Introduction to Complexity Theory

Spring 2024 Instructor: William Hoza

Midterm exam

- Midterm exam will be in class on Wednesday, April 17
- To prepare for the midterm, you only need to study the material up to this point
- The midterm will be about decidability and undecidability

Which problems

can be solved

through computation?

- Let SQUARES = $\{xx : x \in \{0, 1\}^*\}$
- We say that a string $w \in \{0, 1\}^*$ can be decomposed into squares if there exist $y_1, y_2, ..., y_k \in SQUARES$ such that $w = y_1y_2 ... y_k$
- Example: $00100111 = (001\ 001)(1\ 1)$
- Example: 1001 cannot be decomposed into squares

 Let DECOMPOSABLE-INTO-SQUARES = {w ∈ {0, 1}* : w can be decomposed into squares}

- Let DECOMPOSABLE-INTO-SQUARES = {w ∈ {0, 1}* : w can be decomposed into squares}
- Claim: DECOMPOSABLE-INTO-SQUARES is decidable
- **Proof sketch:** Given $w \in \{0, 1\}^*$, try all possible decompositions of winto substrings: $w = y_1 y_2 \dots y_k$
- Check whether $y_i \in \text{SQUARES}$ for each *i*
- If we find a decomposition into squares, accept; otherwise, reject.

- DECOMPOSABLE-INTO-SQUARES is decidable
- So... Can we actually decide it?

Our algorithm is so slow that it's worthless

• Can the following string be decomposed into squares?

- Checking all possible decompositions would take longer than a lifetime
- One begins to feel that DECOMPOSABLE-INTO-SQUARES might as well be undecidable...

Which problems can be solved

through computation?

Refining our model

- The mathematical model we have studied so far: Decidable vs. undecidable
- Now we will refine our model to take into account the fact that in real life, we only have a limited amount of time (and other resources)
- "Complexity theory"

Analogy: Gravity

- In an introductory physics class, we might model gravity as a constant downward force of 9.8 N/kg
- In a more advanced physics class, we might use a

more sophisticated model of gravity:

$$F = G \cdot \frac{m_1 \cdot m_2}{r^2}$$

Theory vs. practice

- Disclaimer: Our theoretical model will still not be perfectly accurate!
- Sometimes, we might categorize a problem as "tractable" even though it is not actually "solvable in practice"
- Other times, we might categorize a problem as "intractable" even though it is actually "solvable in practice"

Theory vs. practice

• Physics analogy: Newton's universal law of gravitation

 $(F = G \cdot \frac{m_1 \cdot m_2}{r^2})$ is a fantastic approximation in many

cases, but it does not correctly predict Mercury's motion around the sun!

- "...all models are wrong, but some are useful." –George Box
- Even though our model of tractability will not be completely accurate, it will still give us real insights into the nature of computation

Time complexity

- Let M be a Turing machine with input alphabet Σ
- The time complexity of *M* is a function $T_M : \mathbb{N} \to \mathbb{N}$ defined as follows:

$$T_M(n) = \max_{w \in \Sigma^n} (\text{running time of } M \text{ on } w)$$

• We are focusing on the worst-case *n*-symbol input

Deciding a language in time T

- Let *L* be a language and let $T: \mathbb{N} \to \mathbb{N}$ be a function
- **Definition:** We say that *L* can be decided in time *T* if there exists a Turing machine *M* such that
 - *M* decides *L*, and
 - If we let $T_M: \mathbb{N} \to \mathbb{N}$ be the time complexity of M, then for every n, we have $T_M(n) \le T(n)$

Scaling behavior

- We will mainly focus on the limiting behavior of T(n) as $n \to \infty$
- How "quickly" does the time complexity T(n) increase when we increase the input length n?

Asymptotic analysis

Asymptotic analysis

• Two possible time complexities:

$$T_1(n) = 3n^2 + 14$$
$$T_2(n) = 2n^2 + 64n + \left[\sqrt{n}\right]$$

- When n is large, the leading $C \cdot n^2$ term dominates
- We will ignore the low-order terms and the leading coefficient C
- We focus on the n^2 part ("quadratic time")

Big-O notation

- $3n^2 + 14$ and $2n^2 + 64n + \left[\sqrt{n}\right]$ are both " $O(n^2)$ "
- More generally, let $T, f: \mathbb{N} \to \mathbb{N}$ be any two functions
- We say that T is O(f) if there exist $C, n_* \in \mathbb{N}$ such that for every $n > n_*$, we have $T(n) \leq C \cdot f(n)$
- Notation: $T \in O(f)$ or $T \leq O(f)$ or T = O(f)

Big-O notation examples

- $3n^2 + 14$ is $O(n^2)$
- $3n^2 + 14$ is $O(n^2 + n)$
- $3n^2 + 14$ is $O(n^3)$
- $3n^2 + 14$ is not $O(n^{1.9})$

Big- Ω and big- Θ

- Let $T, f: \mathbb{N} \to \mathbb{N}$ be any two functions
- We say that T is $\Omega(f)$ if there exist $c \in (0, 1)$ and $n_* \in \mathbb{N}$ such that for every $n > n_*$, we have $T(n) \ge c \cdot f(n)$
- We say that T is $\Theta(f)$ if T is O(f) and T is $\Omega(f)$

Big- Ω and big- Θ examples

- $0.1n^2 + 14$ is $\Omega(n^2)$ and $\Omega(n)$, but not $\Omega(n^3)$
- $0.1n^2 + 14$ is $\Theta(n^2)$ and $\Theta(n^2 + 2n^{1.4})$, but not $\Theta(n)$

