
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Asymptotic analysis

2

Big-𝑂, big-Ω, and big-Θ

• Let 𝑇, 𝑓:ℕ → ℕ be any two functions

• We say that 𝑇 is 𝑂 𝑓 if there exist 𝐶, 𝑛∗ ∈ ℕ such that for every 𝑛 > 𝑛∗,

we have 𝑇 𝑛 ≤ 𝐶 ⋅ 𝑓 𝑛

• We say that 𝑇 is Ω 𝑓 if there exist 𝑐 ∈ 0,1 and 𝑛∗ ∈ ℕ such that for

every 𝑛 > 𝑛∗, we have 𝑇 𝑛 ≥ 𝑐 ⋅ 𝑓 𝑛

• We say that 𝑇 is Θ 𝑓 if 𝑇 is both 𝑂 𝑓 andΩ 𝑓 simultaneously

3

Little-𝑜 notation

• Let 𝑇, 𝑓:ℕ → ℕ be any two functions

• We say that 𝑇 is 𝑜 𝑓 if for every 𝑐 ∈ 0, 1 , there exists 𝑛∗ ∈ ℕ such

that for every 𝑛 > 𝑛∗, we have 𝑇 𝑛 < 𝑐 ⋅ 𝑓 𝑛

• Equivalent:

lim
𝑛→∞

𝑇 𝑛

𝑓 𝑛
= 0

4

Little-𝜔 notation

• Let 𝑇, 𝑓:ℕ → ℕ be any two functions

• We say that 𝑇 is 𝜔 𝑓 if for every 𝐶 ∈ ℕ, there exists 𝑛∗ ∈ ℕ such

that for every 𝑛 > 𝑛∗, we have 𝑇 𝑛 > 𝐶 ⋅ 𝑓 𝑛

• Equivalent:

lim
𝑛→∞

𝑇 𝑛

𝑓 𝑛
= ∞

5

Summary of asymptotic notation

Notation In words Analogy

𝑇 is 𝑜 𝑓 𝑇 𝑛 grows more slowly than 𝑓 𝑛 <

𝑇 is 𝑂 𝑓 𝑇 𝑛 is at most 𝐶 ⋅ 𝑓 𝑛 ≤

𝑇 is Θ 𝑓 𝑇 𝑛 and 𝑓 𝑛 grow at the same rate =

𝑇 is Ω 𝑓 𝑇 𝑛 is at least 𝑐 ⋅ 𝑓 𝑛 ≥

𝑇 is 𝜔 𝑓 𝑇 𝑛 grows more quickly than 𝑓 𝑛 >

6

Note: Big-𝑂 is not just for time complexity!

• We can use asymptotic notation (big-𝑂, etc.) any time we are trying

to understand some kind of “scaling behavior”

• For example, let 𝐺 be a simple undirected graph with 𝑁 vertices

• 𝐺 has 𝑂 𝑁2 edges

• If 𝐺 is connected, then 𝐺 has Ω 𝑁 edges

• Admittedly, we are especially interested in time complexity…

7

Exponential vs. polynomial

• We are especially interested in the distinction between a polynomial

time complexity, such as 𝑇 𝑛 = 𝑛2, and an exponential time

complexity, such as 𝑇 𝑛 = 2𝑛

• We write 𝑇 𝑛 = poly 𝑛 if there is some 𝑘 such that 𝑇 𝑛 = 𝑂 𝑛𝑘

• Exponentials grow much faster than polynomials!

8

Exponential vs. polynomial

• Proof: If 𝑛 ≥ 𝑘, then

2𝑛 = # subsets of {1, 2, … , 𝑛} =෍

𝑖=0

𝑛
𝑛
𝑖

≥
𝑛

𝑘
≥

𝑛

𝑘

𝑘

• Therefore, for every 𝑘, we have 2𝑛 = Ω 𝑛𝑘

• Therefore, for every 𝑘, we have 2𝑛 = Ω 𝑛𝑘+1 = 𝜔 𝑛𝑘

9

Claim: For every constant 𝑘 ∈ ℕ, we have 𝑛𝑘 = 𝑜 2𝑛

Which problems

can be solved

through computation?

10

The complexity class P

• Definition: For any function 𝑇:ℕ → ℕ, we let TIME 𝑇 denote the

class of all languages that can be decided in time 𝑂 𝑇

• Definition: We let P denote the class of all languages that can be

decided in time poly 𝑛 , i.e., in polynomial time

P =ራ

𝑘=1

∞

TIME 𝑛𝑘

11

P: Our model of tractability

• Let 𝐿 be a language

• If 𝐿 ∈ P, then we will consider 𝐿 “tractable”

• If 𝐿 ∉ P, then we will consider 𝐿 “intractable”

12

Example: Primality testing

• PRIMES = 𝑁 ∶ 𝑁 is a prime number

• Proof attempt: For 𝑀 = 2, 3,… ,𝑁 − 1, check if 𝑁/𝑀 is an integer.

• That proof is not correct. The algorithm runs in poly 𝑁 time, but our time

budget is only poly 𝑛 where 𝑛 = 𝑁 ≈ log𝑁!

• The theorem is true, but the proof is beyond the scope of this course

13

Theorem: PRIMES ∈ P

Example: Decompositions into squares

• We designed an algorithm that decides DECOMPOSABLE-INTO-SQUARES

• That algorithm’s time complexity is Ω 2𝑛

• Can we conclude that DECOMPOSABLE-INTO-SQUARES ∉ P?

14

Theorem: DECOMPOSABLE-INTO-SQUARES ∈ P

Decomposing into squares in polynomial time

• Proof: We’ll use an algorithm technique called “dynamic programming”

• Key observation: A nonempty string 𝑤 ∈ {0, 1}∗ can be decomposed into

squares if and only if it can be written in the form 𝑤 = 𝑢𝑦, where 𝑢 can be

decomposed into squares, 𝑢 < 𝑤 , and 𝑦 ∈ SQUARES

15

Theorem: DECOMPOSABLE-INTO-SQUARES ∈ P

Decomposing into squares in polynomial time

• Let 𝑤 be the input, 𝑤 = 𝑤1𝑤2…𝑤𝑛, where 𝑤𝑖 ∈ {0, 1}

• Plan: For each 𝑖 ∈ {0, 1,… , 𝑛}, we will compute a Boolean value 𝑏𝑖 that

indicates whether 𝑤1𝑤2…𝑤𝑖 ∈ DECOMPOSABLE-INTO-SQUARES

16

1) Let 𝑏0 = True

2) For 𝑖 = 1 to 𝑛:

a) If there exists 𝑗 < 𝑖 such that 𝑏𝑗−1 is True and 𝑤𝑗 …𝑤𝑖 ∈ SQUARES, then set 𝑏𝑖 = True

b) Otherwise, set 𝑏𝑖 = False

3) Accept if 𝑏𝑛 is True; reject if 𝑏𝑛 is False

What should 𝑏0 be?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: It depends on 𝑤

B: False

D: It’s not well-defined

A: True

Decomposing into squares in polynomial time

17

• TM implementation: Store 𝑏𝑖 in 𝑤𝑖’s cell, and write # in 𝑤𝑗’s cell

0 0 1
♢

0 0 1 0 1 1 1 0𝑤1 , … , 𝑤𝑛 →

𝑏1 , … , 𝑏𝑛 → F T F F F T F F F

0 1 1 1 0 1 1 0
F F F F F F

#

Current job: Check whether this substring is in SQUARES

1) Let 𝑏0 = True

2) For 𝑖 = 1 to 𝑛:

a) If there exists 𝑗 < 𝑖 such that 𝑏𝑗−1 is True and 𝑤𝑗 …𝑤𝑖 ∈ SQUARES, then set 𝑏𝑖 = True

b) Otherwise, set 𝑏𝑖 = False

3) Accept if 𝑏𝑛 is True; reject if 𝑏𝑛 is False

Decomposing into squares in polynomial time

18

• Outer loop (𝑖) does 𝑂 𝑛 iterations; inner loop (𝑗) does 𝑂 𝑛 iterations

• We can check whether 𝑤𝑗 …𝑤𝑖 ∈ SQUARES in time 𝑂 𝑛2

• Total time complexity: 𝑂 𝑛4 = poly 𝑛

1) Let 𝑏0 = True

2) For 𝑖 = 1 to 𝑛:

a) If there exists 𝑗 < 𝑖 such that 𝑏𝑗−1 is True and 𝑤𝑗 …𝑤𝑖 ∈ SQUARES, then set 𝑏𝑖 = True

b) Otherwise, set 𝑏𝑖 = False

3) Accept if 𝑏𝑛 is True; reject if 𝑏𝑛 is False

Time complexity: Theory vs. practice

• OBJECTION: “In an algorithms course, or in the computing industry, we

would say that we can decide SQUARES in time 𝑂 𝑛 rather than 𝑂 𝑛2 .”

• Is there something wrong with the Turing machine model?

19

← 𝑂 𝑛 iterations

← 𝑂 1 time per iteration “in practice”

Given an array of bits 𝑦:

1) For 𝑖 = 1 to 𝑛/2:

a) If 𝑦 𝑖 ≠ 𝑦[𝑖 + 𝑛/2], reject

2) Accept

Time complexity: Theory vs. practice

• RESPONSE: In this course, we are not concerned about the distinction

between 𝑂 𝑛 time and 𝑂 𝑛2 time

• The Turing machine model is arguably inappropriate for studying

fine-grained time complexity… but that’s not our mission

• We are trying to understand the boundary between tractable and

intractable. Feasible vs. infeasible.

• Is the algorithm usable, or is it so slow that it’s practically worthless?
20

Is the Turing machine model a good model?

• Switching between two reasonable models of computation can

sometimes make the difference between linear time and quadratic time

• Could it ever make the difference between polynomial time and

exponential time?

• For example, what happens if we use a multi-tape Turing machine

instead of a single-tape Turing machine?

21

Multi-tape Turing machines, revisited

• Let 𝐿 be a language, let 𝑘 be a positive integer, and let 𝑇:ℕ → ℕ

• Note: If 𝑇 𝑛 = 𝑂 𝑛𝑘 , then 𝑂 𝑇2 + 𝑇 ⋅ 𝑛 = 𝑂 𝑛2𝑘 = poly 𝑛

22

Theorem: If there is a 𝑘-tape Turing machine that decides 𝐿 with

time complexity 𝑇, then there is a 1-tape Turing machine that

decides 𝐿 with time complexity 𝑂 𝑇2 + 𝑇 ⋅ 𝑛 .

Efficiently simulating 𝑘 tapes using one tape

• Proof sketch: Let 𝑀 be the 𝑘-tape Turing machine deciding 𝐿

• Recall our simulation of 𝑀 by a one-tape machine…

• To simulate step 𝑖, we scan back and forth over 𝑛 + 𝑖 cells of the tape

• Therefore, simulating one step of 𝑀 takes 𝑂 𝑛 + 𝑇 𝑛 steps

• Overall time complexity: 𝑇 𝑛 ⋅ 𝑂 𝑛 + 𝑇 𝑛

23

Robustness of P

• Conclusion: We could define P using one-tape Turing machines or

using multi-tape Turing machines

• Either way, we get the exact same set of languages

24

Robustness of P

• Similarly, many other “realistic” models of computation can be simulated

by one-tape Turing machines with at most a polynomial slowdown

• TMs with two-way-infinite tapes

• TMs with two-dimensional tape

• TMs that can “teleport” to a specified location on their tape in a single step

• The complexity class P is extremely robust against modifications to the

model of computation

25

Note on standards of rigor

• Going forward, when we analyze specific algorithms, we will not actually

prove that they run in polynomial time… we will just assert it

• In each case, one can rigorously prove the time bound by describing a TM

implementation and reasoning about the motions of the heads… but this is tedious

• Note: We still insist on proofs of correctness, just not efficiency

• You should follow this convention on problem set 5 and beyond

• Nevertheless, the Turing machine model remains extremely valuable for us,

because it tells us what an arbitrary poly-time algorithm looks like!
26

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Asymptotic analysis
	Slide 3: Big-cap O, big-cap omega, and big-cap theta
	Slide 4: Little-o notation
	Slide 5: Little-omega notation
	Slide 6: Summary of asymptotic notation
	Slide 7: Note: Big-cap O is not just for time complexity!
	Slide 8: Exponential vs. polynomial
	Slide 9: Exponential vs. polynomial
	Slide 10: Which problems can be solved through computation?
	Slide 11: The complexity class P
	Slide 12: P: Our model of tractability
	Slide 13: Example: Primality testing
	Slide 14: Example: Decompositions into squares
	Slide 15: Decomposing into squares in polynomial time
	Slide 16: Decomposing into squares in polynomial time
	Slide 17: Decomposing into squares in polynomial time
	Slide 18: Decomposing into squares in polynomial time
	Slide 19: Time complexity: Theory vs. practice
	Slide 20: Time complexity: Theory vs. practice
	Slide 21: Is the Turing machine model a good model?
	Slide 22: Multi-tape Turing machines, revisited
	Slide 23: Efficiently simulating k tapes using one tape
	Slide 24: Robustness of P
	Slide 25: Robustness of P
	Slide 26: Note on standards of rigor

