CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Asymptotic analysis

Big-0, big-{), and big-®

*LetT, f:N — N be any two functions

* We say that 7' is O(f) if there exist C,n, € N such that for everyn > n,,
we haveT(n) < C - f(n)

* We say that T is (L(f) if there exist ¢ € (0,1) and n, € N such that for

everyn >n,,wehaveT(n) =c- f(n)

* Wesay that T is O(f) if T is both O(f) and Q(f) simultaneously

Little-o notation

*LetT, f:N — N be any two functions

* We say that 7" is o(f) if for every ¢ € (0, 1), there exists n, € N such

that for everyn > n,, wehaveT(n) < c: f(n)

* Equivalent:

T(n
limﬁ 0

noo f(n)

Little-cw notation

*LetT, f:N — N be any two functions

* We say that T is w(f) if for every C € N, there exists n, € N such

that for everyn > n,, wehaveT(n) > C - f(n)

* Equivalent:

. T(n)
lim —— = o

noo f(n)

Summary of asymptotic notation

Tiso(f) T(n)grows more slowlythan f(n) <
TisO(f) T(n)isatmostC - f(n) <
TisO(f) T(n)and f(n) grow at the same rate =
TisQ(f) T(n)isatleastc: f(n) >

Tisw(f) T(n)grows more quickly than f(n) >

Note: Big-0 is not just for time complexity!

* We can use asymptotic notation (big-0, etc.) any time we are trying

to understand some kind of “scaling behavior”

* For example, let G be a simple undirected graph with N vertices
* G has O(N?) edges

* |If G is connected, then G has Q(N) edges

 Admittedly, we are especially interested in time complexity...

Exponential vs. polynomial

* We are especially interested in the distinction between a polynomial
time complexity, such as T(n) = n?, and an exponential time

complexity, such as T(n) = 2™
* We write T(n) = poly(n) if there is some k such that T(n) = O(nk)

* Exponentials grow much faster than polynomials!

Exponential vs. polynomial

Claim: For every constant k € N, we have n* = 0(2")

* Proof: If n = k, then
n
n n\x
2" = #subsetsof {1, 2, ...,n} = Z (7:) > (k) > (E)

* Therefore, for every k, we have 2" = Q(nk)

o~
[
o

» Therefore, for every k, we have 2" = Q(n**1) = w(nk)

Which problems
can be solved

through computation?

The complexity class P

* Definition: For any function T: N — N, we let TIME(T) denote the

class of all languages that can be decided in time O(T)

* Definition: We let P denote the class of all languages that can be

decided in time poly(n), i.e., in polynomial time

P = U TIME(n*)
k=1

11

P: Our model of tractability

* Let L be alanguage
e If L € P, then we will consider L “tractable”

e If L & P, then we will consider L “intractable”

12

Example: Primality testing

« PRIMES = {(N) : N is a prime number}

Theorem: PRIMES € P

* Proof attempt: For M = 2,3,...,N — 1, checkif N/M is an integer.

* That proof is not correct. The algorithm runs in poly (V) time, but our time

budget is only poly(n) wheren = [{(N)| = log N!

* The theorem is true, but the proof is beyond the scope of this course

13

Example: Decompositions into squares

* We designed an algorithm that decides DECOMPOSABLE-INTO-SQUARES
* That algorithm’s time complexity is (L(2™)

e Can we conclude that DECOMPOSABLE-INTO-SQUARES ¢ P?

Theorem: DECOMPOSABLE-INTO-SQUARES € P

14

Decomposing into squares in polynomial time

Theorem: DECOMPOSABLE-INTO-SQUARES € P

* Proof: We'll use an algorithm technique called “dynamic programming”

* Key observation: A nonempty string w € {0, 1}* can be decomposed into
squares if and only if it can be written in the form w = uy, where u can be

decomposed into squares, |u| < |w|, and y € SQUARES

15

Decomposing into squares in polynomial time

* Let w be the input, w = wyw, ...w,,, where w; € {0, 1}

* Plan: Foreachi € {0, 1, ..., n}, we will compute a Boolean value b; that

indicates whether w,w, ...w; € DECOMPOSABLE-INTO-SQUARES

1) Let by = True < What should b, be? >
2) Fori=1ton:< >< >
A: True B: False
= True

a) |If there ex

b) Otherwise < C: It depends on w >< D: It’s not well-defined >

3) Accept if bn 1S Respond at PollEv.com/whoza or text “whoza” to 22333

16

by, ..

T T
s Wy = 0[0]1|0]|0]1

Decomposing into squares in polynomial time

1) Let by = True

2) Fori=1ton:
a) |If there exists j < i such that b;_; is True and w; ... w; € SQUARES, then set b; = True
b) Otherwise, set b; = False

3) Accept if b, is True; reject if b, is False

* TM implementation: Store b; in w;’s cell, and write # in w;’s cell

Current job: Check whether this substring is in SQUARES

~

by = O F

K#
F
0
JAN

17

Decomposing into squares in polynomial time

1) Letby = True

2) Fori=1ton:
a) If there exists j < i such that b;_; is True and w; ... w; € SQUARES, then set b; = True
b) Otherwise, set b; = False

3) Accept if b, is True; reject if b,, is False

* Quter loop (i) does O(n) iterations; inner loop (j) does O(n) iterations
* We can check whether w; ...w; € SQUARES in time 0(n?)

» Total time complexity: 0(n*) = poly(n)

18

Time complexity: Theory vs. practice

* OBJECTION: “In an algorithms course, or in the computing industry, we

would say that we can decide SQUARES in time O(n) rather than 0(n?).”

Given an array of bits y:

1) Fori=1ton/2: < 0(n) iterations
a) [Ifyli] # y[i + n/2], reject « 0(1) time per iteration “in practice”
2) Accept

* Is there something wrong with the Turing machine model?

Time complexity: Theory vs. practice

 RESPONSE: In this course, we are not concerned about the distinction

between O(n) time and 0(n?) time

* The Turing machine model is arguably inappropriate for studying

fine-grained time complexity... but that’s not our mission

* We are trying to understand the boundary between tractable and

intractable. Feasible vs. infeasible.

* |s the algorithm usable, or is it so slow that it’s practically worthless?

20

s the Turing machine model a good model?

e Switching between two reasonable models of computation can

sometimes make the difference between linear time and quadratic time

* Could it ever make the difference between polynomial time and

exponential time?

* For example, what happens if we use a multi-tape Turing machine

instead of a single-tape Turing machine?

21

Multi-tape Turing machines, revisited

e Let L be alanguage, let k be a positive integer,andlet T: N — N

Theorem: If there is a k-tape Turing machine that decides L with
time complexity T, then there is a 1-tape Turing machine that

decides L with time complexity O(T? + T - n).

* Note: If T(n) = 0(n*), then O(T? + T - n) = 0(n?*) = poly(n)

22

Efficiently simulating k tapes using one tape

* Proof sketch: Let M be the k-tape Turing machine deciding L
* Recall our simulation of M by a one-tape machine...

* To simulate step i, we scan back and forth over n + i cells of the tape

* Therefore, simulating one step of M takes O(n + T(n)) steps

 Overall time complexity: T (n) - O(n + T(n))

23

Robustness of P

* Conclusion: We could define P using one-tape Turing machines or

using multi-tape Turing machines

 Either way, we get the exact same set of languages

24

Robustness of P

e Similarly, many other “realistic” models of computation can be simulated
by one-tape Turing machines with at most a polynomial slowdown
 TMs with two-way-infinite tapes

 TMs with two-dimensional tape

* TMs that can “teleport” to a specified location on their tape in a single step

* The complexity class P is extremely robust against modifications to the
model of computation

25

Note on standards of rigor

* Going forward, when we analyze specific algorithms, we will not actually
prove that they run in polynomial time... we will just assert it

* In each case, one can rigorously prove the time bound by describinga TM

implementation and reasoning about the motions of the heads... but this is tedious

* Note: We still insist on proofs of correctness, just not efficiency

* You should follow this convention on problem set 5 and beyond

* Nevertheless, the Turing machine model remains extremely valuable for us,

because it tells us what an arbitrary poly-time algorithm looks like!

26

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Asymptotic analysis
	Slide 3: Big-cap O, big-cap omega, and big-cap theta
	Slide 4: Little-o notation
	Slide 5: Little-omega notation
	Slide 6: Summary of asymptotic notation
	Slide 7: Note: Big-cap O is not just for time complexity!
	Slide 8: Exponential vs. polynomial
	Slide 9: Exponential vs. polynomial
	Slide 10: Which problems can be solved through computation?
	Slide 11: The complexity class P
	Slide 12: P: Our model of tractability
	Slide 13: Example: Primality testing
	Slide 14: Example: Decompositions into squares
	Slide 15: Decomposing into squares in polynomial time
	Slide 16: Decomposing into squares in polynomial time
	Slide 17: Decomposing into squares in polynomial time
	Slide 18: Decomposing into squares in polynomial time
	Slide 19: Time complexity: Theory vs. practice
	Slide 20: Time complexity: Theory vs. practice
	Slide 21: Is the Turing machine model a good model?
	Slide 22: Multi-tape Turing machines, revisited
	Slide 23: Efficiently simulating k tapes using one tape
	Slide 24: Robustness of P
	Slide 25: Robustness of P
	Slide 26: Note on standards of rigor

