CMSC 28100

Introduction to
 Complexity Theory

Spring 2024
Instructor: William Hoza

Asymptotic analysis

Big- O, big- Ω, and big- Θ

- Let $T, f: \mathbb{N} \rightarrow \mathbb{N}$ be any two functions
- We say that T is $O(f)$ if there exist $C, n_{*} \in \mathbb{N}$ such that for every $n>n_{*}$, we have $T(n) \leq C \cdot f(n)$
- We say that T is $\Omega(f)$ if there exist $c \in(0,1)$ and $n_{*} \in \mathbb{N}$ such that for every $n>n_{*}$, we have $T(n) \geq c \cdot f(n)$
- We say that T is $\Theta(f)$ if T is both $O(f)$ and $\Omega(f)$ simultaneously

Little-o notation

- Let $T, f: \mathbb{N} \rightarrow \mathbb{N}$ be any two functions
- We say that T is $o(f)$ if for every $c \in(0,1)$, there exists $n_{*} \in \mathbb{N}$ such that for every $n>n_{*}$, we have $T(n)<c \cdot f(n)$
- Equivalent:

$$
\lim _{n \rightarrow \infty} \frac{T(n)}{f(n)}=0
$$

Little- ω notation

- Let $T, f: \mathbb{N} \rightarrow \mathbb{N}$ be any two functions
- We say that T is $\omega(f)$ if for every $C \in \mathbb{N}$, there exists $n_{*} \in \mathbb{N}$ such that for every $n>n_{*}$, we have $T(n)>C \cdot f(n)$
- Equivalent:

$$
\lim _{n \rightarrow \infty} \frac{T(n)}{f(n)}=\infty
$$

Summary of asymptotic notation

Notation	In words	Analogy
T is $o(f)$	$T(n)$ grows more slowly than $f(n)$	$<$
T is $O(f)$	$T(n)$ is at most $C \cdot f(n)$	\leq
T is $\Theta(f)$	$T(n)$ and $f(n)$ grow at the same rate	$=$
T is $\Omega(f)$	$T(n)$ is at least $c \cdot f(n)$	\geq
T is $\omega(f)$	$T(n)$ grows more quickly than $f(n)$	$>$

Note: Big- 0 is not just for time complexity!

- We can use asymptotic notation (big- O, etc.) any time we are trying to understand some kind of "scaling behavior"
- For example, let G be a simple undirected graph with N vertices
- G has $O\left(N^{2}\right)$ edges
- If G is connected, then G has $\Omega(N)$ edges
- Admittedly, we are especially interested in time complexity...

Exponential vs. polynomial

- We are especially interested in the distinction between a polynomial time complexity, such as $T(n)=n^{2}$, and an exponential time complexity, such as $T(n)=2^{n}$
- We write $T(n)=\operatorname{poly}(n)$ if there is some k such that $T(n)=O\left(n^{k}\right)$
- Exponentials grow much faster than polynomials!

Exponential vs. polynomial

Claim: For every constant $k \in \mathbb{N}$, we have $n^{k}=o\left(2^{n}\right)$

- Proof: If $n \geq k$, then

$$
2^{n}=\# \text { subsets of }\{1,2, \ldots, n\}=\sum_{i=0}^{n}\binom{n}{i} \geq\binom{ n}{k} \geq\left(\frac{n}{k}\right)^{k}
$$

- Therefore, for every k, we have $2^{n}=\Omega\left(n^{k}\right)$
- Therefore, for every k, we have $2^{n}=\Omega\left(n^{k+1}\right)=\omega\left(n^{k}\right)$

Which problems

can be solved

through computation?

The complexity class P

- Definition: For any function $T: \mathbb{N} \rightarrow \mathbb{N}$, we let $\operatorname{TIME}(T)$ denote the class of all languages that can be decided in time $O(T)$
- Definition: We let P denote the class of all languages that can be decided in time poly(n), i.e., in polynomial time

$$
\mathrm{P}=\bigcup_{k=1}^{\infty} \operatorname{TIME}\left(n^{k}\right)
$$

P: Our model of tractability

- Let L be a language
- If $L \in \mathrm{P}$, then we will consider L "tractable"
- If $L \notin \mathrm{P}$, then we will consider L "intractable"

Example: Primality testing

- PRIMES $=\{\langle N\rangle: N$ is a prime number $\}$

Theorem: PRIMES $\in \mathrm{P}$

- Proof attempt: For $M=2,3, \ldots, N-1$, check if N / M is an integer.
- That proof is not correct. The algorithm runs in poly (N) time, but our time budget is only poly (n) where $n=|\langle N\rangle| \approx \log N$!
- The theorem is true, but the proof is beyond the scope of this course

Example: Decompositions into squares

- We designed an algorithm that decides DECOMPOSABLE-INTO-SQUARES
- That algorithm's time complexity is $\Omega\left(2^{n}\right)$
- Can we conclude that DECOMPOSABLE-INTO-SQUARES \notin P?

Theorem: DECOMPOSABLE-INTO-SQUARES \in P

Decomposing into squares in polynomial time

Theorem: DECOMPOSABLE-INTO-SQUARES $\in P$

- Proof: We'll use an algorithm technique called "dynamic programming"
- Key observation: A nonempty string $w \in\{0,1\}^{*}$ can be decomposed into squares if and only if it can be written in the form $w=u y$, where u can be decomposed into squares, $|u|<|w|$, and $y \in$ SQUARES

Decomposing into squares in polynomial time

- Let w be the input, $w=w_{1} w_{2} \ldots w_{n}$, where $w_{i} \in\{0,1\}$
- Plan: For each $i \in\{0,1, \ldots, n\}$, we will compute a Boolean value b_{i} that indicates whether $w_{1} w_{2} \ldots w_{i} \in$ DECOMPOSABLE-INTO-SQUARES

Decomposing into squares in polynomial time

1) Let $b_{0}=$ True
2) For $i=1$ to n :
a) If there exists $j<i$ such that b_{j-1} is True and $w_{j} \ldots w_{i} \in$ SQUARES, then set $b_{i}=$ True
b) Otherwise, set $b_{i}=$ False
3) Accept if b_{n} is True; reject if b_{n} is False

- TM implementation: Store b_{i} in $w_{i}{ }^{\prime}$'s cell, and write \# in w_{j} 's cell

Current job: Check whether this substring is in SQUARES

Decomposing into squares in polynomial time

1) Let $b_{0}=$ True
2) For $i=1$ to n :
a) If there exists $j<i$ such that b_{j-1} is True and $w_{j} \ldots w_{i} \in$ SQUARES, then set $b_{i}=$ True
b) Otherwise, set $b_{i}=$ False
3) Accept if b_{n} is True; reject if b_{n} is False

- Outer loop (i) does $O(n)$ iterations; inner loop (j) does $O(n)$ iterations
- We can check whether $w_{j} \ldots w_{i} \in$ SQUARES in time $O\left(n^{2}\right)$
- Total time complexity: $O\left(n^{4}\right)=\operatorname{poly}(n)$

Time complexity: Theory vs. practice

- OBJECTION: "In an algorithms course, or in the computing industry, we would say that we can decide SQUARES in time $O(n)$ rather than $O\left(n^{2}\right)$."

Given an array of bits y :

1) For $i=1$ to $n / 2$:
a) If $y[i] \neq y[i+n / 2]$, reject
2) Accept

- Is there something wrong with the Turing machine model?

Time complexity: Theory vs. practice

- RESPONSE: In this course, we are not concerned about the distinction between $O(n)$ time and $O\left(n^{2}\right)$ time
- The Turing machine model is arguably inappropriate for studying fine-grained time complexity... but that's not our mission
- We are trying to understand the boundary between tractable and intractable. Feasible vs. infeasible.
- Is the algorithm usable, or is it so slow that it's practically worthless?

Is the Turing machine model a good model?

- Switching between two reasonable models of computation can sometimes make the difference between linear time and quadratic time
- Could it ever make the difference between polynomial time and exponential time?
- For example, what happens if we use a multi-tape Turing machine instead of a single-tape Turing machine?

Multi-tape Turing machines, revisited

- Let L be a language, let k be a positive integer, and let $T: \mathbb{N} \rightarrow \mathbb{N}$

Theorem: If there is a k-tape Turing machine that decides L with time complexity T, then there is a 1-tape Turing machine that decides L with time complexity $O\left(T^{2}+T \cdot n\right)$.

- Note: If $T(n)=O\left(n^{k}\right)$, then $O\left(T^{2}+T \cdot n\right)=O\left(n^{2 k}\right)=\operatorname{poly}(n)$

Efficiently simulating k tapes using one tape

- Proof sketch: Let M be the k-tape Turing machine deciding L
- Recall our simulation of M by a one-tape machine...
- To simulate step i, we scan back and forth over $n+i$ cells of the tape
- Therefore, simulating one step of M takes $O(n+T(n))$ steps
- Overall time complexity: $T(n) \cdot O(n+T(n))$

Robustness of P

- Conclusion: We could define P using one-tape Turing machines or using multi-tape Turing machines
- Either way, we get the exact same set of languages

Robustness of P

- Similarly, many other "realistic" models of computation can be simulated by one-tape Turing machines with at most a polynomial slowdown
- TMs with two-way-infinite tapes
- TMs with two-dimensional tape
- TMs that can "teleport" to a specified location on their tape in a single step
- The complexity class P is extremely robust against modifications to the model of computation

Note on standards of rigor

- Going forward, when we analyze specific algorithms, we will not actually prove that they run in polynomial time... we will just assert it
- In each case, one can rigorously prove the time bound by describing a TM implementation and reasoning about the motions of the heads... but this is tedious
- Note: We still insist on proofs of correctness, just not efficiency
- You should follow this convention on problem set 5 and beyond
- Nevertheless, the Turing machine model remains extremely valuable for us, because it tells us what an arbitrary poly-time algorithm looks like!

