CMSC 28100

Introduction to
 Complexity Theory

Spring 2024
Instructor: William Hoza

Robustness of P

- The complexity class P is highly robust against modifications to the computational model
- Multi-tape Turing machines, two-dimensional Turing machines, etc.
- After studying many examples, one begins to suspect that every realistic model of computation can be simulated by Turing machines with only polynomial slowdown

Extended Church-Turing Thesis

- Let L be a language

Extended Church-Turing Thesis:

It is physically possible to build a device that decides L in polynomial time if and only if $L \in \mathrm{P}$.

Extended Church-Turing Thesis

Extended Church-Turing Thesis:

It is physically possible to build a device that decides L in polynomial time if and only if $L \in P$.

- If it were true, the thesis would justify using P as our model of tractability
- However, it seems increasingly likely that the thesis is false!
- Two key challenges: Randomized Computation and Quantum Computation

Randomized computation

- Sometimes, in our efforts to solve problems and figure things out, we want to make random choices
- Random sampling for opinion polls
- Randomized controlled trials in science/medicine
- What happens if we incorporate this ability into our computational model?

Randomized computation

- To properly study the role of randomness in computing, we ought to define and study a randomized variant of the Turing machine model
- However, let's temporarily set Turing machines aside - we will circle back to them later
- To build intuition, let's study the role of randomness in a different situation first

Communication Complexity

Communication complexity

- Goal: Compute $f(x, y)$ using as little communication as possible
- In each round, one party sends a single bit while the other party listens
- At the end, both parties announce $f(x, y)$

Alice holds x

Bob holds y

The equality function

- We will focus on the case $f=\mathrm{EQ}_{n}$
- $\mathrm{EQ}_{n}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$
- Definition:

$$
\mathrm{EQ}_{n}(x, y)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { if } x \neq y\end{cases}
$$

- "Does your copy of the database match my copy?"

Protocols for equality

Protocol A:

1) Alice sends x
2) Bob sends $\mathrm{EQ}_{n}(x, y)$

Protocol B:

1) For $i=1$ to n :
a) Alice sends x_{i}
b) Bob sends a bit indicating whether $x_{i}=y_{i}$
$n+1$ bits of communication
$2 n$ bits of communication (in the worst case)

Communication complexity of equality

- Is there a better protocol?

Theorem: Every deterministic communication protocol for EQ_{n} uses at least $n+1$ bits of communication in the worst case

- Before we can prove it, we must clarify how we model communication protocols mathematically

Communication protocol model

- Idea: We model a communication protocol as a binary tree
- We start at the root node
- Someone transmits a zero \Leftrightarrow We move to the left child
- Someone transmits a one \Leftrightarrow We move to the right child
- (Alice and Bob both know where we are in the tree)

Example protocol tree

Rigorously defining communication protocols

- A deterministic communication protocol with n-bit inputs is a rooted binary tree π with the following features
- The vertex set V is partitioned into three parts: $V=V_{A} \cup V_{B} \cup V_{L}$
- Each vertex $v \in V_{A} \cup V_{B}$ has two children (ℓ and r) and is labeled with a function $\delta_{v}:\{0,1\}^{n} \rightarrow\{\ell, r\}$
- Each vertex $v \in V_{L}$ has zero children and is labeled "accept" or "reject"

Rigorously defining communication protocols

- For $x, y \in\{0,1\}^{n}$, we define a sequence of vertices $v_{0}, v_{1}, \ldots, v_{T}$
- $v_{0}=$ the root vertex
- If $v_{i} \in V_{A}$ (Alice speaks next), then $v_{i+1}=\delta_{v_{i}}(x)$
- If $v_{i} \in V_{B}$ (Bob speaks next), then $v_{i+1}=\delta_{v_{i}}(y)$
- If $v_{i} \in V_{L}$ (the conversation is over), then $T=i$
- We define leaf $(x, y)=v_{T}$
- We define $\pi(x, y)=\left\{\begin{array}{l}1 \text { if leaf }(x, y) \text { is labeled "accept" } \\ 0 \text { if leaf }(x, y) \text { is labeled "reject" }\end{array}\right.$

Communication complexity

- We say that π computes f if for every $x, y \in\{0,1\}^{n}$, we have

$$
\pi(x, y)=f(x, y)
$$

- The cost of the communication protocol π is the depth of the tree, i.e., the length of the longest path \dagger In this model, what happens if Alice and Bob speak at the same time?
- $($ Cost $=$ number of rounds $=$

A: Trick question. In this model,
they never speak simultaneously
B: Only one of the messages is
successfully transmitted
C: Both of the messages are
D: Neither message is successfully
successfully transmitted transmitted

Respond at PollEv.com/whoza or text "whoza" to 22333

Rectangle lemma

- Let π be any communication protocol with n-bit inputs
- Let $x, x^{\prime}, y, y^{\prime} \in\{0,1\}^{n}$ and let v be any leaf

Rectangle Lemma: If leaf $(x, y)=\operatorname{leaf}\left(x^{\prime}, y^{\prime}\right)=v$, then leaf $\left(x, y^{\prime}\right)=\operatorname{leaf}\left(x^{\prime}, y\right)=v$

- Proof (sketch): Let $v_{0}, v_{1}, \ldots, v_{T}$ be the vertices from the root to v
- If $v_{i} \in V_{A}$, we must have $\delta_{v_{i}}(x)=\delta_{v_{i}}\left(x^{\prime}\right)=v_{i+1}$. Similarly if $v_{i} \in V_{B}$

Communication complexity of equality

Theorem: Every deterministic communication protocol that computes EQ_{n} has cost at least $n+1$

- Proof: Let π be any communication protocol that computes EQ_{n}
- Assume WLOG that every leaf is at the same depth m
- Our job is to prove that $m \geq n+1$

Communication complexity of EQ_{n}

- If $x \neq y$, then leaf $(x, x) \neq \operatorname{leaf}(x, y)$
- By the rectangle lemma, it follows that leaf $(x, x) \neq \operatorname{leaf}(y, y)$
- Therefore, there are at least 2^{n} distinct leaves labeled "accept"
- There is also at least one leaf labeled "reject"
- Therefore, there are more than 2^{n} leaves
- Therefore, $2^{m}>2^{n}$, hence $m \geq n+1$

Communication complexity of EQ_{n}

- We just proved that computing $E Q_{n}$ requires $n+1$ bits of communication
- However, there is a loophole!
- Our impossibility proof only applies to deterministic protocols!

Randomized communication complexity

- In a randomized communication protocol, Alice and Bob are permitted to make decisions based on coin tosses

Alice holds x

Communication channel

Bob holds y

Randomized communication protocols

- Mathematically, we model a randomized communication protocol with n-bit inputs as a deterministic communication protocol with $(n+r)$-bit inputs for some $r \geq 0$
- Alice holds $x u$, where $x \in\{0,1\}^{n}$ and $u \in\{0,1\}^{r}$
- Bob holds $y w$, where $y \in\{0,1\}^{n}$ and $w \in\{0,1\}^{r}$
- Interpretation: x, y are the "actual inputs," and u, w are the coin tosses

