CMSC 28100

Introduction to
 Complexity Theory

Spring 2024
Instructor: William Hoza

Communication complexity

- Goal: Compute $f(x, y)$ using as little communication as possible
- In each round, one party sends a single bit while the other party listens
- At the end, both parties announce $f(x, y)$

Alice holds x

Communication channel

Bob holds y

Communication complexity of equality

$$
\mathrm{EQ}_{n}(x, y)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { if } x \neq y\end{cases}
$$

Theorem: Every deterministic communication protocol that computes EQ_{n} has cost at least $n+1$

Randomized communication complexity

- In a randomized communication protocol, Alice and Bob are permitted to make decisions based on coin tosses

Alice holds x

Communication channel

Bob holds y

Randomized communication protocols

- Mathematically, we model a randomized communication protocol with n-bit inputs as a deterministic communication protocol with $(n+r)$-bit inputs for some $r \geq 0$
- Alice holds $x u$, where $x \in\{0,1\}^{n}$ and $u \in\{0,1\}^{r}$
- Bob holds $y w$, where $y \in\{0,1\}^{n}$ and $w \in\{0,1\}^{r}$
- Interpretation: x, y are the "actual inputs," and u, w are the coin tosses

The output of a randomized protocol

- For each $x, y \in\{0,1\}^{n}$ and $u, w \in\{0,1\}^{r}$, we have $\pi(x u, y w) \in\{0,1\}$
- We define $\pi(x, y)$ as follows: Pick $(u, w) \in\{0,1\}^{r} \times\{0,1\}^{r}$ uniformly at random, then set $\pi(x, y)=\pi(x u, y w)$
- $\pi(x, y)$ is a random variable. For each $b \in\{0,1\}$, we have

$$
\operatorname{Pr}[\pi(x, y)=b]=\frac{|\{(u, w): \pi(x u, y w)=b\}|}{\left|\{0,1\}^{r} \times\{0,1\}^{r}\right|}
$$

Computing a function with a randomized protocol

- Let $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ and let $\delta>0$
- Suppose that for every $x, y \in\{0,1\}^{n}$, we have

$$
\operatorname{Pr}[\pi(x, y)=f(x, y)] \geq 1-\delta
$$

- In this case, we say that π computes f with error probability δ

Randomized comn

- Let $\delta>0$ be any constant

Respond at PollEv.com/whoza or text "whoza" to 22333

Theorem: For every $n \in \mathbb{N}$, there exists a randomized communication protocol with cost $O(\log n)$ that computes EQ_{n} with error probability δ

- Randomized protocols are exponentially better than deterministic protocols!

Randomized protocol for EQ_{n}

- Assume without loss of generality that n / δ is a power of two
- Think of $x, y \in\{0,1\}^{n}$ as numbers $x, y \in\left\{0,1, \ldots, 2^{n}-1\right\}$
- Let $p_{1}, p_{2}, p_{3}, \ldots$ be the sequence of all prime numbers (in order)
- Protocol:

1. Alice picks $i \in\{1,2, \ldots, n / \delta\}$ uniformly at random and sends $\left\langle i, x \bmod p_{i}\right\rangle$ to Bob
2. Bob sends a bit indicating whether $x \bmod p_{i}=y \bmod p_{i}$
3. If so, they accept, otherwise, they reject

Analysis of the protocol: Correctness

- If $x=y$, then $\operatorname{Pr}\left[x \bmod p_{i}=y \bmod p_{i}\right]=1 \quad$ Now suppose $x \neq y$
- $\operatorname{Pr}[$ error $]=\operatorname{Pr}\left[x \bmod p_{i}=y \bmod p_{i}\right]=\operatorname{Pr}\left[p_{i}\right.$ divides $\left.|x-y|\right]$
- Let BAD be the set of prime numbers that divide $|x-y|$
- Every prime number is at least 2 , so $|\mathrm{BAD}| \leq \log |x-y|<n$
- There are n / δ candidate i values, so $\operatorname{Pr}\left[p_{i} \in \mathrm{BAD}\right] \leq \frac{n}{n / \delta}=\delta$

Analysis of the protocol: Efficiency

- We chose $i \leq n / \delta$, so sending i costs $O(\log n)$ bits of communication
- Sending $x \bmod p_{i}$ costs $O\left(\log p_{i}\right)$ bits of communication
- How big could p_{i} be?

Theorem: Let p_{k} be the k-th prime. Then $p_{k}=\Theta(k \cdot \log k)=o\left(k^{2}\right)$.

- (Proof is outside the scope of this course)
- We chose $i \leq n / \delta$, so $\log p_{i}=\log \left(o\left(n^{2}\right)\right)=O(\log n)$

Which problems

can be solved
through computation?

Randomized Turing machines

Randomized Turing machines

- Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be a function (time bound)
- Definition: A randomized time-T Turing machine is a two-tape Turing machine M such that for every $n \in \mathbb{N}$, every $w \in \Sigma^{n}$, and every $u \in\{0,1\}^{T(n)}$, if we initialize M with w on tape 1 and u on tape 2 , then it halts within $T(n)$ steps
- Interpretation: w is the input and u is the coin tosses
- (Giving M more than $T(n)$ random bits would be pointless)

Acceptance probability

- Let M be a randomized Turing machine and let $w \in \Sigma^{*}$
- To run M on w, we select $u \in\{0,1\}^{T(n)}$ uniformly at random and initialize M with w on tape 1 and u on tape 2
- M might accept w sometimes and reject w other times
$\operatorname{Pr}[M$ accepts $w]=\frac{\mid\{u: M \text { accepts } w \text { when tape } 2 \text { is initialized with } u\} \mid}{\left|\{0,1\}^{T(n)}\right|}$

The complexity class BPP

- Let $L \subseteq \Sigma^{*}$ be a language
- Definition: $L \in$ BPP if there exists a randomized polynomial-time Turing machine M such that for every $w \in \Sigma^{*}$:
- If $w \in L$, then $\operatorname{Pr}[M$ accepts $w] \geq 2 / 3$
- If $w \notin L$, then $\operatorname{Pr}[M$ accepts $w] \leq 1 / 3$
- "Bounded-error Probabilistic Polynomial-time"

