CMSC 28100

Introduction to Complexity Theory

Spring 2024
Instructor: William Hoza

Which problems

can be solved
through computation?

Randomized Turing machines

Input tape \rightarrow

Randomness tape \rightarrow

The complexity class BPP

- Let $L \subseteq \Sigma^{*}$ be a language
- Definition: $L \in$ BPP if there exists a randomized polynomial-time Turing machine M such that for every $w \in \Sigma^{*}$:
- If $w \in L$, then $\operatorname{Pr}[M$ accepts $w] \geq 2 / 3$
- If $w \notin L$, then $\operatorname{Pr}[M$ accepts $w] \leq 1 / 3$
- "Bounded-error Probabilistic Polynomial-time"

Amplification lemma

- Let $L \in \mathrm{BPP}$, and let $k \in \mathbb{N}$ be any constant

Amplification Lemma: There exists a randomized polynomial-time Turing machine M such that for every $n \in \mathbb{N}$ and every $w \in \Sigma^{n}$:

- If $w \in L$, then $\operatorname{Pr}[M$ accepts $w] \geq 1-1 / 2^{n^{k}}$
- If $w \notin L$, then $\operatorname{Pr}[M$ accepts $w] \leq 1 / 2^{n^{k}}$
- As $n \rightarrow \infty$, the error probability goes to 0 extremely rapidly!

Proof of the amplification lemma

- For simplicity, we will only prove the amplification lemma in a special case
- We will assume that there is a randomized poly-time Turing machine M_{0} such that for every $w \in \Sigma^{*}$:
- If $w \in L$, then $\operatorname{Pr}\left[M_{0}\right.$ accepts $\left.w\right] \geq 2 / 3$
- If $w \notin L$, then $\operatorname{Pr}\left[M_{0}\right.$ accepts $\left.w\right]=0$
\uplus No false positives!
- See the textbook for a proof of the general case

Proof of the amp

- Low-error algorithm M :

Respond at PollEv.com/whoza or text "whoza" to 22333

1) For $i=1$ to n^{k} :
a) Simulate M_{0} on w using fresh random bits.
b) If M_{0} accepts, accept.
2) Reject.

- If $w \notin L$, then $\operatorname{Pr}[M$ accepts $w]=0$.

Still no false positives

- If $w \in L$, then $\operatorname{Pr}[M$ rejects $w] \leq(1 / 3)^{n^{k}}=1 / 3^{n^{k}}<1 / 2^{n^{k}}$

BPP as a model of tractability

- Because of the amplification lemma, languages in BPP should be considered "tractable"
- A mistake that occurs with probability $1 / 2^{100}$ can be safely ignored
- (Even if you use a deterministic algorithm, can you really be 100\% certain that the computation was carried out correctly?)

Extended Church-Turing Thesis

- Let L be a language

Extended Church-Turing Thesis:

It is physically possible to build a device that decides L in polynomial time if and only if $L \in \mathrm{P}$.

- Does the BPP model disprove the extended Church-Turing thesis?

P vs. BPP

- $\mathrm{P} \subseteq \mathrm{BPP}$
- Does $\mathrm{P}=\mathrm{BPP}$?
- Is randomness helpful for computation?
- If $\mathrm{P} \neq \mathrm{BPP}$, then the extended Church-Turing thesis is false
- This is a profound question about the nature of efficient computation
- It's an open question! Nobody knows how to prove $\mathrm{P}=\mathrm{BPP}$ or $\mathrm{P} \neq \mathrm{BPP}$

P vs. BPP

- In communication complexity, randomness is powerful
- There are some languages in BPP that are not known to be in P
- These considerations might suggest $\mathrm{P} \neq \mathrm{BPP}$
- Surprisingly, there is a significant body of evidence favoring the opposite!

Conjecture: $\mathrm{P}=\mathrm{BPP}$

Extended Church-Turing Thesis

- Let L be a language

Extended Church-Turing Thesis:

It is physically possible to build a device that decides L in polynomial time if and only if $L \in \mathrm{P}$.

- Assuming $\mathrm{P}=\mathrm{BPP}$, the extended Church-Turing thesis survives the challenge posed by randomized computation!

Derandomization

- Suppose $L \in$ BPP
- If we want to decide L without randomness, what can we do?
- How can we convert a randomized algorithm into a deterministic algorithm?

Brute-force derandomization

- Let M be the randomized polynomial-time Turing machine guaranteed by the assumption $L \in \operatorname{BPP}$. Say M runs in time n^{k}
- Deterministic algorithm that decides L : Given $w \in \Sigma^{n}$:

1. For every $u \in\{0,1\}^{n^{k}}$:
a) Simulate M, initialized with w on tape 1 and u on tape 2
b) Keep a count of how many simulations accept
2. If more than half of the simulations accepted, then accept. Otherwise, reject

Brute-force derandomization: Correctness

1. For every $u \in\{0,1\}^{n^{k}}$:
a) Simulate M, initialized with w on tape 1 and u on tape 2
b) Keep a count of how many simulations accept
2. If more than half of the simulations accepted, then accept. Otherwise, reject

- If $w \in L$, then at least
- If $w \notin L$, then at mos

Respond at PollEv.com/whoza or text "whoza" to 22333

Brute-force derandomization: Time complexity

1. For every $u \in\{0,1\}^{n^{k}}$:
a) Simulate M, initialized with w on tape 1 and u on tape 2
b) Keep a count of how many simulations accept
2. If more than half of the simulations accepted, then accept. Otherwise, reject

- Time complexity: $2^{\text {poly }(n)}$
- This algorithm does not show that $\mathrm{P}=\mathrm{BPP}$, but it does show that even randomized algorithms have limitations. For example, HALT \notin BPP

The complexity class EXP

- Definition: EXP is the class of languages that can be decided in time $2^{\text {poly }(n)}$:

$$
\operatorname{EXP}=\bigcup_{k=1}^{\infty} \operatorname{TIME}\left(2^{n^{k}}\right)
$$

- Brute-force derandomization proves that BPP \subseteq EXP

$\mathrm{P} \subseteq \mathrm{BPP} \subseteq \mathrm{EXP}$

Brute-force derandomization: Space complexity

1. For every $u \in\{0,1\}^{n^{k}}$:
a) Simulate M, initialized with w on tape 1 and u on tape 2
b) Keep a count of how many simulations accept
2. If more than half of the simulations accepted, then accept. Otherwise, reject

Respond at PollEv.com/whoza or text "whoza" to 22333

The complexity class PSPACE

- Let L be a language
- Definition: $L \in$ PSPACE if there exists a Turing machine M that decides L with space complexity $O\left(n^{k}\right)$ for some constant $k \in \mathbb{N}$
- Brute-force derandomization proves that BPP \subseteq PSPACE

PSPACE vs. EXP

- We have proven two upper bounds on the power of BPP:
- BPP \subseteq EXP
- $\mathrm{BPP} \subseteq$ PSPACE
- Which theorem is stronger?
- How does PSPACE compare to EXP?

Theorem: PSPACE \subseteq EXP

- Proof: Let M be a Turing machine that decides a language L
- Let T, S be the amounts of time/space that M uses on some input w
- Problem set 2: $T \leq C^{S+1}$, where C depends only on M
- When $S=\operatorname{poly}(n)$, we get

$$
T \leq C^{\text {poly }(n)}=\left(2^{\log C}\right)^{\text {poly }(n)}=2^{(\log C) \cdot \operatorname{poly}(n)}=2^{\operatorname{poly}(n)}
$$

