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Which problems

can be solved

through computation?
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Randomized Turing machines
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The complexity class BPP

• Let 𝐿 ⊆ Σ∗ be a language

• Definition: 𝐿 ∈ BPP if there exists a randomized polynomial-time 

Turing machine 𝑀 such that for every 𝑤 ∈ Σ∗:

• If 𝑤 ∈ 𝐿, then Pr 𝑀 accepts 𝑤 ≥ 2/3

• If 𝑤 ∉ 𝐿, then Pr 𝑀 accepts 𝑤 ≤ 1/3 

• “Bounded-error Probabilistic Polynomial-time”
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Amplification lemma

• Let 𝐿 ∈ BPP, and let 𝑘 ∈ ℕ be any constant

• As 𝑛 → ∞, the error probability goes to 0 extremely rapidly!
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Amplification Lemma: There exists a randomized polynomial-time 

Turing machine 𝑀 such that for every 𝑛 ∈ ℕ and every 𝑤 ∈ Σ𝑛:

• If 𝑤 ∈ 𝐿, then Pr 𝑀 accepts 𝑤 ≥ 1 − 1/2𝑛𝑘

• If 𝑤 ∉ 𝐿, then Pr 𝑀 accepts 𝑤 ≤ 1/2𝑛𝑘



Proof of the amplification lemma

• For simplicity, we will only prove the amplification lemma in a special case

• We will assume that there is a randomized poly-time Turing machine 𝑀0 

such that for every 𝑤 ∈ Σ∗:

• See the textbook for a proof of the general case
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• If 𝑤 ∈ 𝐿, then Pr 𝑀0 accepts 𝑤 ≥ 2/3

• If 𝑤 ∉ 𝐿, then Pr 𝑀0 accepts 𝑤 = 0  No false positives!



Proof of the amplification lemma

• Low-error algorithm 𝑀: Given 𝑤 ∈ Σ𝑛:

1) For 𝑖 = 1 to 𝑛𝑘:

a) Simulate 𝑀0 on 𝑤 using fresh random bits.

b) If 𝑀0 accepts, accept.

2) Reject.

• If 𝑤 ∉ 𝐿, then Pr 𝑀 accepts 𝑤 = 0. Still no false positives

• If 𝑤 ∈ 𝐿, then Pr 𝑀 rejects 𝑤 ≤ 1/3 𝑛𝑘
= 1/3𝑛𝑘

< 1/2𝑛𝑘
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Polynomial time

• If 𝑤 ∈ 𝐿, then Pr 𝑀0 accepts 𝑤 ≥ 2/3

• If 𝑤 ∉ 𝐿, then Pr 𝑀0 accepts 𝑤 = 0

If 𝑀0 uses 𝑅(𝑛) many random bits, then
how many random bits does 𝑀 use?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: 𝑅 𝑛 𝑘

A: 𝑅 𝑛 + 𝑛𝑘

D: Not enough information

B: 𝑅(𝑛) ⋅ 𝑛𝑘



BPP as a model of tractability

• Because of the amplification lemma, languages in BPP should be 

considered “tractable”

• A mistake that occurs with probability 1/2100 can be safely ignored

• (Even if you use a deterministic algorithm, can you really be 100% certain 

that the computation was carried out correctly?)
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Extended Church-Turing Thesis

• Let 𝐿 be a language

• Does the BPP model disprove the extended Church-Turing thesis?
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Extended Church-Turing Thesis:

It is physically possible to build a device that 

decides 𝐿 in polynomial time if and only if 𝐿 ∈ P.



P vs. BPP

• P ⊆ BPP

• Does P = BPP?

• Is randomness helpful for computation?

• If P ≠ BPP, then the extended Church-Turing thesis is false

• This is a profound question about the nature of efficient computation

• It’s an open question! Nobody knows how to prove P = BPP or P ≠ BPP
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BPP



P vs. BPP

• In communication complexity, randomness is powerful

• There are some languages in BPP that are not known to be in P

• These considerations might suggest P ≠ BPP

• Surprisingly, there is a significant body of evidence favoring the opposite!
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Conjecture: P = BPP



Extended Church-Turing Thesis

• Let 𝐿 be a language

• Assuming P = BPP, the extended Church-Turing thesis survives the 

challenge posed by randomized computation!
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Extended Church-Turing Thesis:

It is physically possible to build a device that 

decides 𝐿 in polynomial time if and only if 𝐿 ∈ P.



Derandomization

• Suppose 𝐿 ∈ BPP

• If we want to decide 𝐿 without randomness, what can we do?

• How can we convert a randomized algorithm into a deterministic 

algorithm?
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Brute-force derandomization

• Let 𝑀 be the randomized polynomial-time Turing machine guaranteed by 

the assumption 𝐿 ∈ BPP. Say 𝑀 runs in time 𝑛𝑘

• Deterministic algorithm that decides 𝐿: Given 𝑤 ∈ Σ𝑛:

14

1. For every 𝑢 ∈ 0, 1 𝑛𝑘
:

a) Simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑢 on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject



Brute-force derandomization: Correctness

• If 𝑤 ∈ 𝐿, then at least two thirds of the simulations will accept

• If 𝑤 ∉ 𝐿, then at most two thirds of the simulations will accept
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1. For every 𝑢 ∈ 0, 1 𝑛𝑘
:

a) Simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑢 on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject

What is the time complexity of the algorithm?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: 22Θ 𝑛

B: poly 𝑛

D: ∞

A: 2poly 𝑛



Brute-force derandomization: Time complexity

• Time complexity: 2poly 𝑛  

• This algorithm does not show that P = BPP, but it does show that even 

randomized algorithms have limitations. For example, HALT ∉ BPP
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1. For every 𝑢 ∈ 0, 1 𝑛𝑘
:

a) Simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑢 on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject



The complexity class EXP

• Definition: EXP is the class of languages that can be decided in time 

2poly 𝑛 :

EXP = ራ

𝑘=1

∞

TIME 2𝑛𝑘

• Brute-force derandomization proves that BPP ⊆ EXP
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P ⊆ BPP ⊆ EXP 
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Brute-force derandomization: Space complexity
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1. For every 𝑢 ∈ 0, 1 𝑛𝑘
:

a) Simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑢 on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject

What is the space complexity of the algorithm?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: 22Θ 𝑛

A: 2Θ 𝑛𝑘

D: ∞

B: poly 𝑛



The complexity class PSPACE

• Let 𝐿 be a language

• Definition: 𝐿 ∈ PSPACE if there exists a Turing machine 𝑀 that 

decides 𝐿 with space complexity 𝑂 𝑛𝑘  for some constant 𝑘 ∈ ℕ

• Brute-force derandomization proves that BPP ⊆ PSPACE
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PSPACE vs. EXP

• We have proven two upper bounds on the power of BPP:

• BPP ⊆ EXP

• BPP ⊆ PSPACE

• Which theorem is stronger?

• How does PSPACE compare to EXP?
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• Proof: Let 𝑀 be a Turing machine that decides a language 𝐿

• Let 𝑇, 𝑆 be the amounts of time/space that 𝑀 uses on some input 𝑤

• Problem set 2: 𝑇 ≤ 𝐶𝑆+1, where 𝐶 depends only on 𝑀

• When 𝑆 = poly 𝑛 , we get

𝑇 ≤ 𝐶poly 𝑛 = 2log 𝐶 poly 𝑛
= 2 log 𝐶 ⋅poly 𝑛 = 2poly 𝑛

22

Theorem: PSPACE ⊆ EXP
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