CMSC 28100

Introduction to
 Complexity Theory

Spring 2024
Instructor: William Hoza

The complexity class BPP

- Let $L \subseteq \Sigma^{*}$ be a language
- Definition: $L \in$ BPP if there exists a randomized polynomial-time Turing machine M such that for every $w \in \Sigma^{*}$:
- If $w \in L$, then $\operatorname{Pr}[M$ accepts $w] \geq 2 / 3$
- If $w \notin L$, then $\operatorname{Pr}[M$ accepts $w] \leq 1 / 3$

P vs. BPP

- $\mathrm{P} \subseteq \mathrm{BPP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXP}$

$$
\text { Conjecture: } \mathrm{P}=\mathrm{BPP}
$$

- We will show that languages in BPP can be decided by "circuits" consisting of a polynomial number of logic gates
- This is tantalizingly similar to the statement " $\mathrm{P}=\mathrm{BPP}$ "

Boolean circuits

- For us, a "circuit" is a network of logic gates applied to Boolean variables

- V means OR
- \wedge means AND
- ᄀ means NOT
- Each x_{i} can be either 0 or 1
(FALSE or TRUE)

Boolean circuits

- Definition: An n-input m-output circuit is a directed acyclic graph with the following types of nodes:
- Nodes with zero incoming edges ("wires"). Each such node is labeled with a variable x_{i} ($1 \leq$ $i \leq n$) or a constant (0 or 1)
- Nodes with one incoming wire, labeled \neg
- Nodes with two incoming wires, labeled \wedge or \vee

- Among the nodes with zero outgoing wires, m of them are additionally labeled as "output 1", "output 2", ..., "output m"

Boolean circuits

- Each node g computes a function $g:\{0,1\}^{n} \rightarrow\{0,1\}$ defined inductively:
- If g is labeled x_{i}, then $g(x)=$ the i-th bit of x
- If g is labeled \neg and its incoming wire comes from f, then $g(x)=\neg f(x)$
- If g is labeled \wedge and its incoming wires come from f and h, then $g(x)=f(x) \wedge h(x)$
- If g is labeled \vee and its incoming wires come from f and h, then $g(x)=f(x) \vee h(x)$

Boolean circuits

- Let the output nodes be g_{1}, \ldots, g_{m}
- As a whole, the circuit computes $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ defined by

$$
C(x)=\left(g_{1}(x), \ldots, g_{m}(x)\right)
$$

Circuit size

- The size of the circuit is the total number of AND/OR/NOT gates
- Size is a measure of the total amount of "effort" that the circuit exerts
- If $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is a function, the circuit complexity of f is the size of the smallest circuit that computes f
- Circuit complexity is a measure of how much effort is required to compute f

Circuit complexity example 1

- Let $f(x)=x_{1} \vee x_{2} \vee \cdots \vee x_{n}$

Circuit complexity example 2

- Let $f(x)=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}$

- What is the circuit complexity of f ?
- Answer: $\Theta(n)$
- Each " \oplus gate" can be implemented using $O(1)$ many \wedge, \vee, \neg gates

Every function has a circuit

- Are there functions with infinite circuit complexity?
- Recall: Some languages cannot be decided by algorithms
- Are there functions that cannot be computed by circuits?

Theorem: For every $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, there exists a circuit that computes f.

- For simplicity, let's only prove the case $m=1$

Boolean expressions: Literals

- For the proof, we will reason about Boolean expressions
- A Boolean expression is a way of representing a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ as a string
- The simplest Boolean expression is a single variable " x_{i} "
- We use the notation \bar{x}_{i} to denote the negation of x_{i} (also denoted $\neg x_{i}$)
- Definition: A literal is a variable or its negation (x_{i} or \bar{x}_{i})

Conjunctive normal form formulas

- Definition: A clause is a disjunction (OR) of literals. Example:

$$
x_{1} \vee \bar{x}_{2} \vee x_{7}
$$

- Definition: A conjunctive normal form (CNF) formula is a conjunction (AND) of clauses. Example:

$$
\phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(x_{5} \vee x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee \bar{x}_{5} \vee x_{4}\right)
$$

- In other words, a CNF formula is an AND of ORs of literals

Every function has a CNF formula

- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be any function

Lemma: The function f can be represented by a CNF formula in which there are at most 2^{n} clauses and each clause has at most n literals.

- Proof: For each $z \in\{0,1\}^{n}$ such that $f(z)=0$, we make a clause C_{z} asserting that $x \neq z$
- Example: $f\left(x_{1}, x_{2}\right)=x_{1} \oplus x_{2}=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right)$

Every function has a circuit

$$
\text { Theorem: For every } f:\{0,1\}^{n} \rightarrow\{0,1\} \text {, there exists a }
$$ circuit of size $O\left(n \cdot 2^{n}\right)$ that computes f.

- Proof: Using the CNF representation, we have $f(x)=\bigwedge_{i=1}^{2^{n}} \vee_{j=1}^{n} \ell_{i j}$ where each $\ell_{i j}$ is a literal
- Circuit: A tree of $O\left(2^{n}\right)$ many \wedge gates. At each leaf, we have a tree of $O(n)$ many \vee gates. At each leaf of that tree, we have a variable and possibly a \neg gate

Polynomial-size circuits

- We showed that every function has a circuit, but the circuit we constructed has exponential size
- Which functions have polynomial circuit complexity?
- Technically, it wouldn't make sense to say that an individual function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ has "polynomial circuit complexity," because n is fixed
- Therefore, let's switch to our familiar framework of languages

Circuit complexity of a binary language

- Let $L \subseteq\{0,1\}^{*}$ be a language
- For each $n \in \mathbb{N}$, we define $L_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ by the rule

$$
L_{n}(w)= \begin{cases}1 & \text { if } w \in L \\ 0 & \text { if } w \notin L\end{cases}
$$

- We define the circuit complexity of L to be the function $S: \mathbb{N} \rightarrow \mathbb{N}$ defined by $S(n)=$ the size of the smallest circuit that computes L_{n}
- Note: Each circuit only handles a single input length! Different from TMs

Circuit complexity of an arbitrary language

- More generally, let $L \subseteq \Sigma^{*}$ be a language where $|\Sigma| \geq 2$
- Let $r=\lceil\log |\Sigma|\rceil \geq 1$
- For each $n \in \mathbb{N}$, we define $L_{n}:\{0,1\}^{n r} \rightarrow\{0,1\}$ by the rule

$$
L_{n}(\langle w\rangle)= \begin{cases}1 & \text { if } w \in L \\ 0 & \text { if } w \notin L\end{cases}
$$

- We define the circuit complexity of L to be the function $S: \mathbb{N} \rightarrow \mathbb{N}$ defined by $S(n)=$ the size of the smallest circuit that computes L_{n}

The complexity class PSIZE

- Let $S: \mathbb{N} \rightarrow \mathbb{N}$ be a function
- Definition: $\operatorname{SIZE}(S)$ is the set of all languages L such that the circuit complexity of L is $O(S)$
- Definition: PSIZE is the set of all languages with polynomial circuit complexity:

$$
\operatorname{PSIZE}=\bigcup_{k=1}^{\infty} \operatorname{SIZE}\left(n^{k}\right)
$$

