
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

The complexity class BPP

• Let 𝐿 ⊆ Σ∗ be a language

• Definition: 𝐿 ∈ BPP if there exists a randomized polynomial-time

Turing machine 𝑀 such that for every 𝑤 ∈ Σ∗:

• If 𝑤 ∈ 𝐿, then Pr 𝑀 accepts 𝑤 ≥ 2/3

• If 𝑤 ∉ 𝐿, then Pr 𝑀 accepts 𝑤 ≤ 1/3

2

3

P

EXP

Decidable languages

BPP

PSPACE

P vs. BPP

• P ⊆ BPP ⊆ PSPACE ⊆ EXP

• We will show that languages in BPP can be decided by “circuits”

consisting of a polynomial number of logic gates

• This is tantalizingly similar to the statement “P = BPP”

4

Conjecture: P = BPP

Boolean circuits

• For us, a “circuit” is a network of logic gates applied to Boolean variables

5

∨

∧ ∧

∨ ∨

∧ ∧ ∧ ∧

𝑥1 𝑥2 𝑥3 𝑥4

¬ ¬ ¬ ¬

¬ ¬

• ∨ means OR

• ∧ means AND

• ¬ means NOT

• Each 𝑥𝑖 can be either 0 or 1

(FALSE or TRUE)

0 1 1 1

1 0

0

0

1

1 1

1 1

10 0

0 1 0 0

0

01

1

10

01

1

Boolean circuits

• Definition: An 𝑛-input 𝑚-output circuit is a directed acyclic graph with the

following types of nodes:

• Nodes with zero incoming edges (“wires”). Each such node is labeled with a variable 𝑥𝑖 (1 ≤

𝑖 ≤ 𝑛) or a constant (0 or 1)

• Nodes with one incoming wire, labeled ¬

• Nodes with two incoming wires, labeled ∧ or ∨

• Among the nodes with zero outgoing wires, 𝑚 of them are additionally labeled as

“output 1”, “output 2”, …, “output 𝑚”

6

“gates”

Boolean circuits

• Each node 𝑔 computes a function 𝑔: {0, 1}𝑛 → {0, 1} defined inductively:

• If 𝑔 is labeled 𝑥𝑖, then 𝑔 𝑥 = the 𝑖-th bit of 𝑥

• If 𝑔 is labeled ¬ and its incoming wire comes from 𝑓, then 𝑔 𝑥 = ¬𝑓 𝑥

• If 𝑔 is labeled ∧ and its incoming wires come from 𝑓 and ℎ, then 𝑔 𝑥 = 𝑓 𝑥 ∧ ℎ 𝑥

• If 𝑔 is labeled ∨ and its incoming wires come from 𝑓 and ℎ, then 𝑔 𝑥 = 𝑓 𝑥 ∨ ℎ 𝑥

7

Boolean circuits

• Let the output nodes be 𝑔1, … , 𝑔𝑚

• As a whole, the circuit computes 𝐶: 0, 1 𝑛 → 0, 1 𝑚 defined by

𝐶 𝑥 = 𝑔1 𝑥 , … , 𝑔𝑚 𝑥

8

Circuit size

• The size of the circuit is the total number of AND/OR/NOT gates

• Size is a measure of the total amount of “effort” that the circuit exerts

• If 𝑓: {0, 1}𝑛 → {0, 1}𝑚 is a function, the circuit complexity of 𝑓 is the

size of the smallest circuit that computes 𝑓

• Circuit complexity is a measure of how much effort is required to

compute 𝑓

9

Circuit complexity example 1

• Let 𝑓 𝑥 = 𝑥1 ∨ 𝑥2 ∨ ⋯ ∨ 𝑥𝑛

10

What is the circuit complexity of 𝑓?

Respond at PollEv.com/whoza or text “whoza” to 22333

B: 𝑂 1A: Θ 𝑛2

D: Θ 2𝑛C: Θ 𝑛

∨

∨ ∨

∨ ∨

𝑥1 𝑥2 𝑥7 𝑥8

∨∨

𝑥3 𝑥4 𝑥5 𝑥6

Circuit complexity example 2

• Let 𝑓 𝑥 = 𝑥1 ⊕ 𝑥2 ⊕ ⋯ ⊕ 𝑥𝑛

• What is the circuit complexity of 𝑓?

• Answer: Θ 𝑛

• Each “⊕ gate” can be implemented using 𝑂 1 many ∧, ∨, ¬ gates

11

⊕

⊕ ⊕

⊕ ⊕

𝑥1 𝑥2 𝑥7 𝑥8

⊕⊕

𝑥3 𝑥4 𝑥5 𝑥6

Every function has a circuit

• Are there functions with infinite circuit complexity?

• Recall: Some languages cannot be decided by algorithms

• Are there functions that cannot be computed by circuits?

• For simplicity, let’s only prove the case 𝑚 = 1

12

Theorem: For every 𝑓: {0, 1}𝑛 → {0, 1}𝑚,

there exists a circuit that computes 𝑓.

Boolean expressions: Literals

• For the proof, we will reason about Boolean expressions

• A Boolean expression is a way of representing a function 𝑓: 0, 1 𝑛 → 0, 1

as a string

• The simplest Boolean expression is a single variable “𝑥𝑖”

• We use the notation ҧ𝑥𝑖 to denote the negation of 𝑥𝑖 (also denoted ¬𝑥𝑖)

• Definition: A literal is a variable or its negation (𝑥𝑖 or ҧ𝑥𝑖)

13

Conjunctive normal form formulas

• Definition: A clause is a disjunction (OR) of literals. Example:

𝑥1 ∨ ҧ𝑥2 ∨ 𝑥7

• Definition: A conjunctive normal form (CNF) formula is a conjunction

(AND) of clauses. Example:

𝜙 = 𝑥1 ∨ ҧ𝑥2 ∧ 𝑥5 ∨ 𝑥1 ∨ 𝑥2 ∧ 𝑥3 ∨ ҧ𝑥5 ∨ 𝑥4

• In other words, a CNF formula is an AND of ORs of literals

14

Every function has a CNF formula

• Let 𝑓: 0, 1 𝑛 → 0, 1 be any function

• Proof: For each 𝑧 ∈ 0, 1 𝑛 such that 𝑓 𝑧 = 0, we make a clause 𝐶𝑧

asserting that 𝑥 ≠ 𝑧

• Example: 𝑓 𝑥1, 𝑥2 = 𝑥1 ⊕ 𝑥2 = 𝑥1 ∨ 𝑥2 ∧ ҧ𝑥1 ∨ ҧ𝑥2
15

Lemma: The function 𝑓 can be represented by a CNF formula in which

there are at most 2𝑛 clauses and each clause has at most 𝑛 literals.

Every function has a circuit

• Proof: Using the CNF representation, we have 𝑓 𝑥 = 𝑖=1ٿ
2𝑛

𝑗=1ڀ
𝑛 ℓ𝑖𝑗 where each ℓ𝑖𝑗

is a literal

• Circuit: A tree of 𝑂 2𝑛 many ∧ gates. At each leaf, we have a tree of 𝑂 𝑛 many ∨

gates. At each leaf of that tree, we have a variable and possibly a ¬ gate

16

Theorem: For every 𝑓: {0, 1}𝑛 → {0, 1}, there exists a

circuit of size 𝑂 𝑛 ⋅ 2𝑛 that computes 𝑓.

Polynomial-size circuits

• We showed that every function has a circuit, but the circuit we

constructed has exponential size

• Which functions have polynomial circuit complexity?

• Technically, it wouldn’t make sense to say that an individual function

𝑓: 0, 1 𝑛 → 0, 1 has “polynomial circuit complexity,” because 𝑛 is fixed

• Therefore, let’s switch to our familiar framework of languages

17

Circuit complexity of a binary language

• Let 𝐿 ⊆ 0, 1 ∗ be a language

• For each 𝑛 ∈ ℕ, we define 𝐿𝑛: {0, 1}𝑛 → {0, 1} by the rule

𝐿𝑛 𝑤 = ቊ
1 if 𝑤 ∈ 𝐿
0 if 𝑤 ∉ 𝐿

• We define the circuit complexity of 𝐿 to be the function 𝑆: ℕ → ℕ defined

by 𝑆 𝑛 = the size of the smallest circuit that computes 𝐿𝑛

• Note: Each circuit only handles a single input length! Different from TMs
18

Circuit complexity of an arbitrary language

• More generally, let 𝐿 ⊆ Σ∗ be a language where Σ ≥ 2

• Let 𝑟 = log Σ ≥ 1

• For each 𝑛 ∈ ℕ, we define 𝐿𝑛: 0, 1 𝑛𝑟 → {0, 1} by the rule

𝐿𝑛 𝑤 = ቊ
1 if 𝑤 ∈ 𝐿
0 if 𝑤 ∉ 𝐿

• We define the circuit complexity of 𝐿 to be the function 𝑆: ℕ → ℕ

defined by 𝑆 𝑛 = the size of the smallest circuit that computes 𝐿𝑛

19

The complexity class PSIZE

• Let 𝑆: ℕ → ℕ be a function

• Definition: SIZE 𝑆 is the set of all languages 𝐿 such that the circuit complexity

of 𝐿 is 𝑂 𝑆

• Definition: PSIZE is the set of all languages with polynomial circuit complexity:

PSIZE = ራ

𝑘=1

∞

SIZE(𝑛𝑘)

20

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: The complexity class BPP
	Slide 3
	Slide 4: P vs. BPP
	Slide 5: Boolean circuits
	Slide 6: Boolean circuits
	Slide 7: Boolean circuits
	Slide 8: Boolean circuits
	Slide 9: Circuit size
	Slide 10: Circuit complexity example 1
	Slide 11: Circuit complexity example 2
	Slide 12: Every function has a circuit
	Slide 13: Boolean expressions: Literals
	Slide 14: Conjunctive normal form formulas
	Slide 15: Every function has a CNF formula
	Slide 16: Every function has a circuit
	Slide 17: Polynomial-size circuits
	Slide 18: Circuit complexity of a binary language
	Slide 19: Circuit complexity of an arbitrary language
	Slide 20: The complexity class PSIZE

