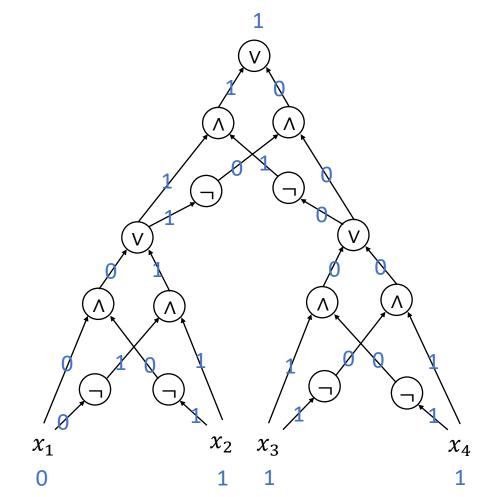
CMSC 28100

Introduction to Complexity Theory

Spring 2024 Instructor: William Hoza

Boolean circuits

• For us, a "circuit" is a network of logic gates applied to Boolean variables



- V means OR
- A means AND
- ¬ means NOT
- Each x_i can be either 0 or 1
 (FALSE or TRUE)

Circuit complexity of a binary language

- Let $L \subseteq \{0, 1\}^*$ be a language
- For each $n \in \mathbb{N}$, we define $L_n: \{0, 1\}^n \to \{0, 1\}$ by the rule

$$L_n(w) = \begin{cases} 1 & \text{if } w \in L \\ 0 & \text{if } w \notin L \end{cases}$$

- We define the circuit complexity of L to be the function $S: \mathbb{N} \to \mathbb{N}$ defined by S(n) = the size of the smallest circuit that computes L_n
- Note: Each circuit only handles a single input length! Different from TMs

The complexity class PSIZE

- Let $S: \mathbb{N} \to \mathbb{N}$ be a function
- **Definition:** SIZE(S) is the set of all languages L such that the circuit complexity of L is O(S)
- **Definition: PSIZE** is the set of all languages with polynomial circuit complexity:

$$PSIZE = \bigcup_{k=1}^{\infty} SIZE(n^k)$$

Circuit complexity vs. time complexity

• Let $T: \mathbb{N} \to \mathbb{N}$ be any function (time bound)

Theorem: $TIME(T) \subseteq SIZE(T^2)$. In particular, $P \subseteq PSIZE$.

- Polynomial Time Algorithm ⇒ Polynomial Size Circuits
- The proof is based on computation histories

Locality of computation

- Let C be a configuration of a TM M
- We can write $C = c_1 c_2 \dots c_\ell$ for some $c_1, \dots, c_\ell \in \Gamma \cup Q$
- Then NEXT(C) = $c'_1 c'_2 \dots c'_\ell$ for some $c'_1, \dots, c'_\ell \in \Gamma \cup Q$
- Fact:

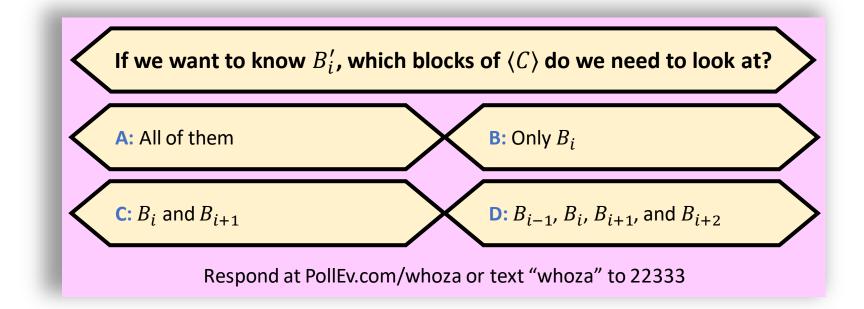
$$c'_{i} = \begin{cases} \text{the third symbol of NEXT}(\Diamond c_{i-1}c_{i}c_{i+1}c_{i+2}) & \text{if } c_{i-1} \in Q \text{ or } c_{i} \in Q \text{ or } c_{i+1} \in Q \\ c_{i} & \text{otherwise} \end{cases}$$

Encoding configurations in binary

- Let C be a configuration of a TM M, say $C = u_1 u_2 \dots u_k q v_1 v_2 \dots v_m$
- Each symbol/state $b \in \Gamma \cup Q$ can be encoded in binary as $\langle b \rangle \in \{0, 1\}^r$ for some r = O(1)
- We define $\langle C \rangle = \langle u_1 \rangle \langle u_2 \rangle \cdots \langle u_k \rangle \langle q \rangle \langle v_1 \rangle \cdots \langle v_m \rangle$

• Suppose
$$\langle C \rangle = B_1 B_2 \cdots B_\ell$$
 where $B_i \in \{0, 1\}^r$

• Suppose $(\text{NEXT}(C)) = B'_1 B'_2 \cdots B'_{\ell}$ where $B'_i \in \{0, 1\}^r$

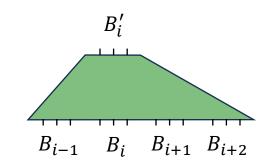


• There is a function Δ_M : $\{0, 1\}^{4r} \to \{0, 1\}^r$ such that for every configuration C, if $\langle C \rangle = B_1 B_2 \cdots B_\ell$ and $\langle \text{NEXT}(C) \rangle = B'_1 B'_2 \cdots B'_\ell$, then for every i, we have

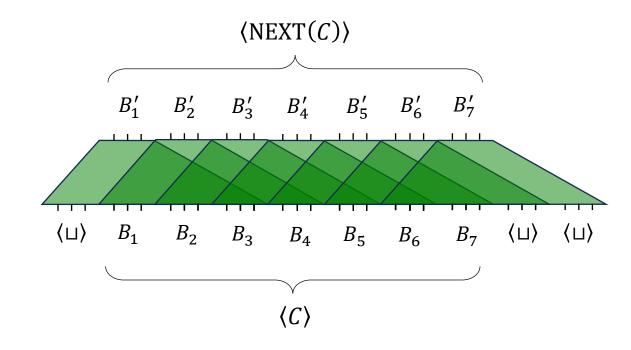
$$\Delta_M(B_{i-1}B_iB_{i+1}B_{i+2}) = B'_i$$

- This formula works for all $1 \le i \le \ell$, if we define $B_0 = B_{\ell+1} = B_{\ell+2} = \langle \sqcup \rangle$
- Intuitively, Δ_M is a version of the transition function of M

• There is a circuit of size O(1) that computes Δ_M



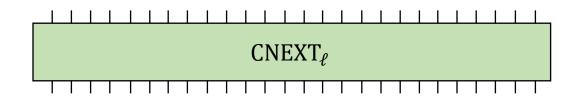
• Now let's combine many copies of that circuit in parallel:



- The construction on the previous slide shows that for every $\ell \in \mathbb{N}$, there is a circuit CNEXT_{ℓ} : $\{0, 1\}^{r\ell} \to \{0, 1\}^{r\ell}$ satisfying the following properties:
 - If C is a configuration such that $|C| = |NEXT(C)| = \ell$, then

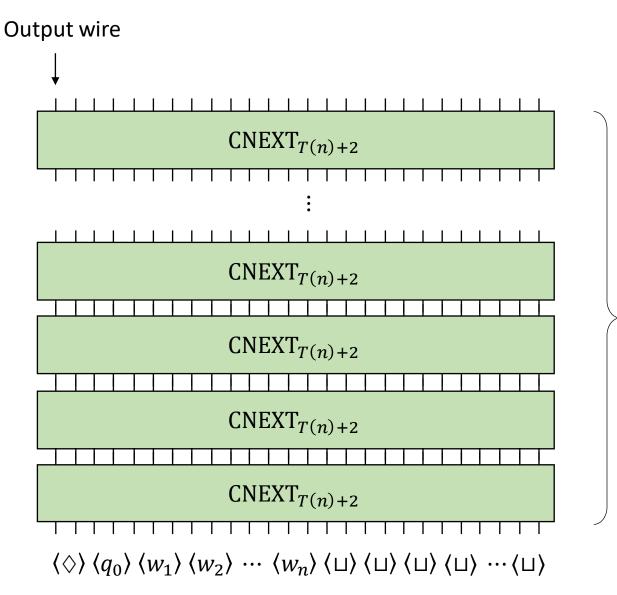
 $CNEXT_{\ell}(\langle C \rangle) = \langle NEXT(C) \rangle$

• The size of CNEXT_{ℓ} is $O(\ell)$



Machine \Rightarrow circuit

- Let M be a TM that decides Lwith time complexity T(n)
- Assume WLOG:
 - *M* halts in cell 1
 - $\langle q_{\mathrm{accept}} \rangle$ begins with 1
 - $\langle q_{\rm reject} \rangle$ begins with 0
- We get a circuit computing L_n
- Size: $O(T(n)^2)$



Input wires

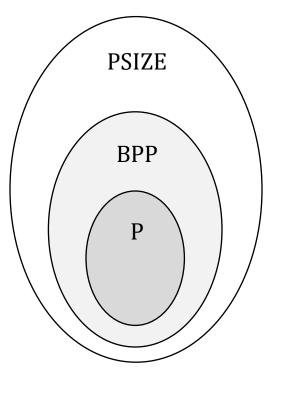
T(n) copies

Adleman's theorem

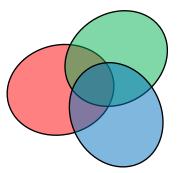
- We just showed that $P \subseteq PSIZE$
- Next, we will prove a stronger theorem:

Adleman's Theorem: $BPP \subseteq PSIZE$

- Note: The circuit model is a deterministic model of computation!
- Adleman's theorem is tantalizingly similar to the statement "P = BPP"



The union bound



• The proof of Adleman's theorem uses a key fact from probability theory:

The Union Bound: For any events E_1, E_2, \dots, E_k , we have $\Pr[E_1 \text{ or } E_2 \text{ or } \dots \text{ or } E_k] \leq \Pr[E_1] + \Pr[E_2] + \dots + \Pr[E_k]$

- Example: Suppose Pr[ice on floor] = 0.3 and Pr[liquid water on floor] = 0.4
- Then $Pr[water on floor] \le 0.3 + 0.4 = 0.7$

Proof of Adleman's theorem (BPP \subseteq PSIZE)

- **Proof:** Let $L \in BPP$ where $L \subseteq \Sigma^*$
- Amplification lemma \Rightarrow There exists a polynomial-time randomized Turing machine M such that for every $n \in \mathbb{N}$ and every $w \in \Sigma^n$:
 - If $w \in L$, then $\Pr[M \text{ accepts } w] > 1 1/|\Sigma|^n$
 - If $w \notin L$, then $\Pr[M \text{ rejects } w] < 1 1/|\Sigma|^n$
- Let T(n) be the time complexity of M

"Good" random bits

- Let $n \in \mathbb{N}$, let $w \in \Sigma^n$, and let $u \in \{0, 1\}^{T(n)}$
- We say that *u* is good for *w* if:
 - $w \in L$ and M accepts w when tape 2 is initialized with u, or
 - $w \notin L$ and M rejects w when tape 2 is initialized with u.
- Otherwise, we say that *u* is bad for *w*

Random bits: Good for all inputs simultaneously

Claim: For every *n*, there exists $u_* \in \{0, 1\}^{T(n)}$ that is good for all $w \in \Sigma^n$

• **Proof:** By the union bound, if we pick $u \in \{0, 1\}^{T(n)}$ uniformly at random,

$$\Pr\left[\begin{array}{c} \text{there exists } w \in \Sigma^n \\ \text{such that } u \text{ is bad for } w\end{array}\right] \le \sum_{w \in \Sigma^n} \Pr[u \text{ is bad for } w] < |\Sigma^n| \cdot \frac{1}{|\Sigma|^n} = 1$$

• There is a nonzero chance that u is good for all w, so there must exist at least one u_* that is good for all w