
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Boolean circuits

• For us, a “circuit” is a network of logic gates applied to Boolean variables

2

∨

∧ ∧

∨ ∨

∧ ∧ ∧ ∧

𝑥1 𝑥2 𝑥3 𝑥4

¬ ¬ ¬ ¬

¬ ¬

• ∨ means OR

• ∧ means AND

• ¬ means NOT

• Each 𝑥𝑖 can be either 0 or 1

(FALSE or TRUE)

0 1 1 1

1 0

0

0

1

1 1

1 1

10 0

0 1 0 0

0

01

1

10

01

1

Circuit complexity of a binary language

• Let 𝐿 ⊆ 0, 1 ∗ be a language

• For each 𝑛 ∈ ℕ, we define 𝐿𝑛: {0, 1}𝑛 → {0, 1} by the rule

𝐿𝑛 𝑤 = ቊ
1 if 𝑤 ∈ 𝐿
0 if 𝑤 ∉ 𝐿

• We define the circuit complexity of 𝐿 to be the function 𝑆: ℕ → ℕ defined

by 𝑆 𝑛 = the size of the smallest circuit that computes 𝐿𝑛

• Note: Each circuit only handles a single input length! Different from TMs
3

The complexity class PSIZE

• Let 𝑆: ℕ → ℕ be a function

• Definition: SIZE 𝑆 is the set of all languages 𝐿 such that the circuit complexity

of 𝐿 is 𝑂 𝑆

• Definition: PSIZE is the set of all languages with polynomial circuit complexity:

PSIZE = ራ

𝑘=1

∞

SIZE(𝑛𝑘)

4

Circuit complexity vs. time complexity

• Let 𝑇: ℕ → ℕ be any function (time bound)

• Polynomial Time Algorithm ⇒ Polynomial Size Circuits

• The proof is based on computation histories

5

Theorem: TIME 𝑇 ⊆ SIZE 𝑇2 . In particular, P ⊆ PSIZE.

Locality of computation

• Let 𝐶 be a configuration of a TM 𝑀

• We can write 𝐶 = 𝑐1𝑐2 … 𝑐ℓ for some 𝑐1, … , 𝑐ℓ ∈ Γ ∪ 𝑄

• Then NEXT 𝐶 = 𝑐1
′ 𝑐2

′ … 𝑐ℓ
′ for some 𝑐1

′ , … , 𝑐ℓ
′ ∈ Γ ∪ 𝑄

• Fact:

𝑐𝑖
′ = ቊ

the third symbol of NEXT ♢𝑐𝑖−1𝑐𝑖𝑐𝑖+1𝑐𝑖+2 if 𝑐𝑖−1 ∈ 𝑄 or 𝑐𝑖 ∈ 𝑄 or 𝑐𝑖+1 ∈ 𝑄
𝑐𝑖 otherwise

6

Encoding configurations in binary

• Let 𝐶 be a configuration of a TM 𝑀, say 𝐶 = 𝑢1𝑢2 … 𝑢𝑘𝑞𝑣1𝑣2 … 𝑣𝑚

• Each symbol/state 𝑏 ∈ Γ ∪ 𝑄 can be encoded in binary as 𝑏 ∈ 0, 1 𝑟

for some 𝑟 = 𝑂 1

• We define 𝐶 = 𝑢1 𝑢2 ⋯ 𝑢𝑘 𝑞 𝑣1 ⋯ 𝑣𝑚

7

From one configuration to the next

• Suppose 𝐶 = 𝐵1𝐵2 ⋯ 𝐵ℓ where 𝐵𝑖 ∈ 0, 1 𝑟

• Suppose NEXT 𝐶 = 𝐵1
′ 𝐵2

′ ⋯ 𝐵ℓ
′ where 𝐵𝑖

′ ∈ 0, 1 𝑟

8

If we want to know 𝐵𝑖
′, which blocks of ⟨𝐶⟩ do we need to look at?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: 𝐵𝑖 and 𝐵𝑖+1

A: All of them B: Only 𝐵𝑖

D: 𝐵𝑖−1, 𝐵𝑖, 𝐵𝑖+1, and 𝐵𝑖+2

From one configuration to the next

• There is a function Δ𝑀: 0, 1 4𝑟 → 0, 1 𝑟 such that for every configuration

𝐶, if 𝐶 = 𝐵1𝐵2 ⋯ 𝐵ℓ and NEXT 𝐶 = 𝐵1
′ 𝐵2

′ ⋯ 𝐵ℓ
′ , then for every 𝑖, we

have

Δ𝑀 𝐵𝑖−1𝐵𝑖𝐵𝑖+1𝐵𝑖+2 = 𝐵𝑖
′

• This formula works for all 1 ≤ 𝑖 ≤ ℓ, if we define 𝐵0 = 𝐵ℓ+1 = 𝐵ℓ+2 = ⊔

• Intuitively, Δ𝑀 is a version of the transition function of 𝑀

9

From one configuration to the next

• There is a circuit of size 𝑂 1 that computes Δ𝑀

• Now let’s combine many copies of that circuit in parallel:

10

𝐵𝑖−1 𝐵𝑖 𝐵𝑖+1 𝐵𝑖+2

𝐵𝑖
′

⊔ ⊔ ⊔𝐵1 𝐵2 𝐵3 𝐵4 𝐵5 𝐵6 𝐵7

𝐵1
′ 𝐵2

′ 𝐵3
′ 𝐵4

′ 𝐵5
′ 𝐵6

′ 𝐵7
′

𝐶

NEXT 𝐶

From one configuration to the next

• The construction on the previous slide shows that for every ℓ ∈ ℕ, there is a

circuit CNEXTℓ: 0, 1 𝑟ℓ → 0, 1 𝑟ℓ satisfying the following properties:

• If 𝐶 is a configuration such that 𝐶 = |NEXT 𝐶 | = ℓ, then

CNEXTℓ 𝐶 = NEXT 𝐶

• The size of CNEXTℓ is 𝑂 ℓ

11

CNEXTℓ

Machine ⇒ circuit

• Let 𝑀 be a TM that decides 𝐿

with time complexity 𝑇 𝑛

• Assume WLOG:

• 𝑀 halts in cell 1

• ⟨𝑞accept⟩ begins with 1

• 𝑞reject begins with 0

• We get a circuit computing 𝐿𝑛

• Size: 𝑂 𝑇 𝑛 2

12

⋮

♢ 𝑞0 𝑤1 𝑤2 ⋯ 𝑤𝑛 ⊔ ⊔ ⊔ ⟨⊔⟩ ⋯ ⟨⊔⟩

Output wire

Input wires

CNEXT𝑇 𝑛 +2

CNEXT𝑇 𝑛 +2

CNEXT𝑇 𝑛 +2

CNEXT𝑇 𝑛 +2

CNEXT𝑇 𝑛 +2

𝑇 𝑛
copies

Adleman’s theorem

• We just showed that P ⊆ PSIZE

• Next, we will prove a stronger theorem:

• Note: The circuit model is a deterministic model of computation!

• Adleman’s theorem is tantalizingly similar to the statement “P = BPP”

13

Adleman’s Theorem: BPP ⊆ PSIZE

BPP

PSIZE

P

The union bound

• The proof of Adleman’s theorem uses a key fact from probability theory:

• Example: Suppose Pr ice on floor = 0.3 and Pr liquid water on floor = 0.4

• Then Pr water on floor ≤ 0.3 + 0.4 = 0.7

14

The Union Bound: For any events 𝐸1, 𝐸2, … , 𝐸𝑘 , we have

Pr 𝐸1 or 𝐸2 or … or 𝐸𝑘 ≤ Pr 𝐸1 + Pr 𝐸2 + ⋯ + Pr 𝐸𝑘

Proof of Adleman’s theorem (BPP ⊆ PSIZE)

• Proof: Let 𝐿 ∈ BPP where 𝐿 ⊆ Σ∗

• Amplification lemma ⇒ There exists a polynomial-time randomized

Turing machine 𝑀 such that for every 𝑛 ∈ ℕ and every 𝑤 ∈ Σ𝑛:

• If 𝑤 ∈ 𝐿, then Pr 𝑀 accepts 𝑤 > 1 − 1/ Σ 𝑛

• If 𝑤 ∉ 𝐿, then Pr 𝑀 rejects 𝑤 < 1 − 1/ Σ 𝑛

• Let 𝑇 𝑛 be the time complexity of 𝑀

15

“Good” random bits

• Let 𝑛 ∈ ℕ, let 𝑤 ∈ Σ𝑛, and let 𝑢 ∈ 0, 1 𝑇 𝑛

• We say that 𝑢 is good for 𝑤 if:

• 𝑤 ∈ 𝐿 and 𝑀 accepts 𝑤 when tape 2 is initialized with 𝑢, or

• 𝑤 ∉ 𝐿 and 𝑀 rejects 𝑤 when tape 2 is initialized with 𝑢.

• Otherwise, we say that 𝑢 is bad for 𝑤

16

Random bits: Good for all inputs simultaneously

• Proof: By the union bound, if we pick 𝑢 ∈ 0, 1 𝑇 𝑛 uniformly at random,

Pr
there exists 𝑤 ∈ Σ𝑛

such that 𝑢 is bad for 𝑤
≤ ෍

𝑤∈Σ𝑛

Pr 𝑢 is bad for 𝑤 < Σ𝑛 ⋅
1

Σ 𝑛
= 1

• There is a nonzero chance that 𝑢 is good for all 𝑤, so there must exist at

least one 𝑢∗ that is good for all 𝑤

17

Claim: For every 𝑛, there exists 𝑢∗ ∈ 0, 1 𝑇 𝑛 that is good for all 𝑤 ∈ Σ𝑛

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Boolean circuits
	Slide 3: Circuit complexity of a binary language
	Slide 4: The complexity class PSIZE
	Slide 5: Circuit complexity vs. time complexity
	Slide 6: Locality of computation
	Slide 7: Encoding configurations in binary
	Slide 8: From one configuration to the next
	Slide 9: From one configuration to the next
	Slide 10: From one configuration to the next
	Slide 11: From one configuration to the next
	Slide 12: Machine implies circuit
	Slide 13: Adleman’s theorem
	Slide 14: The union bound
	Slide 15: Proof of Adleman’s theorem (BPP subset or equals PSIZE)
	Slide 16: “Good” random bits
	Slide 17: Random bits: Good for all inputs simultaneously

