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Boolean circuits

* For us, a “circuit” is a network of logic gates applied to Boolean variables

* V means OR

* A means AND

* = means NOT

* Each x; can be eitherOor1

(FALSE or TRUE)




Circuit complexity of a binary language

e let L € {0,1}" be alanguage

* Foreachn € N, we define L,,: {0,1}" — {0, 1} by the rule

11 ifwel
L"(W)_{o ifw ¢ L

* We define the circuit complexity of L to be the function S: N — N defined

by S(n) = the size of the smallest circuit that computes L,

* Note: Each circuit only handles a single input length! Different from TMs



The complexity class PSIZE

e Let S: N — N be a function

 Definition: SIZE(S) is the set of all languages L such that the circuit complexity
of Lis O(S)

* Definition: PSIZE is the set of all languages with polynomial circuit complexity:

PSIZE = U SIZE (n®)
k=1



Circuit complexity vs. time complexity

e Let T: N — N be any function (time bound)

Theorem: TIME(T) < SIZE(T?). In particular, P € PSIZE.

* Polynomial Time Algorithm = Polynomial Size Circuits

* The proof is based on computation histories



Locality of computation

* Let C be a configurationofa TM M
* We can write C = ¢4¢, ...cp forsome cq,...,c, ET' U Q
e Then NEXT(C) = c;c; ...c, forsomecy,...,c, ETUQ

* Fact:

l

o= the third symbol of NEXT({Oc¢;_ c;c;4,¢;1,) ifc;_1 EQorc; € Qorc;,q1 €Q
S o otherwise



Encoding configurations in binary

* Let C be a configurationofa TM M, say C = uquU, ... U QU1 V5 ... Uy

* Each symbol/state b € ' U Q can be encoded in binary as (b) € {0,1}"

for somer = 0(1)

* We define (C) = (uq ){uy) - (up g v1) -+ (V)



From one configuration to the next

* Suppose (C) =B{B, B, whereB; €{0,1}"

e Suppose (NEXT(C)) = B{B; - B, where B; € {0, 1}"

<If we want to know B;, which blocks of (C) do we need to look at?

<A: All of them >< B: Only B; >
< C: By and By, >< D: Bi_y, By, Bisy, and Biy >

Respond at PollEv.com/whoza or text “whoza” to 22333




From one configuration to the next

* Thereis a function A,: {0, 1}*" — {0, 1}" such that for every configuration
C,if (C) = B;B, - B, and (NEXT(C)) = B;B; ::* By, then for every i, we
have

Ay(Bi—1BiBi11Biy2) = B;
* This formulaworks forall1 <i < ¢, if we define By = By.; = By, = (L)

* Intuitively, A, is a version of the transition function of M



From one configuration to the next

* There is a circuit of size O(1) that computes A,,

* Now let’s combine many copies of that circuit in parallel:

(NEXT(C))

B!

l

Bi1 B; Bit1 Biw2
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From one configuration to the next

* The construction on the previous slide shows that for every £ € N, there is a
circuit CNEXT,: {0, 1}"* — {0, 1}"* satisfying the following properties:
* If C is a configuration such that |C| = [NEXT(C)| = ¢, then
CNEXT,({C)) = (NEXT(C))

* The size of CNEXT, is O(¥)

CNEXT,
Frrrrr+rtrtr vttt TP
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Output wire

MaChine : CirCUit +III I I I I I N I A N ~
CNEXTr(n)+2
L tM b TM th td d L Frrrtr+rrtonrrrr bttt T
*Le ed d ecldaes :
Lt trrtr1rtrrrrtrrrrrrtrrrrr e
with time complexity T'(n) CNEXTy (2
T A A I A >T(n.)
* Assume WLOG: CNEXTy(n) 42 copies
e« M halts in cell 1 [T T T [T T T T T T T T T T T T I T T TITIT T
. ) ) CNEXTr () +2
<qaccept>bengW|th1 I A A I I O O
* (CIreject) begins with 0 CNEXTr () +2
Y

* We get a circuit computing L, (0 (qo) (Wy) (W) - () (L) (L) (L) (L) - (L)

& /
e

* Size: O(T(Tl)z) Input wires




PSIZE

Adleman’s theorem

BPP

* We just showed that P € PSIZE

* Next, we will prove a stronger theorem:

Adleman’s Theorem: BPP € PSIZE

* Note: The circuit model is a deterministic model of computation!

* Adleman’s theorem is tantalizingly similar to the statement “P = BPP”
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The union bound

* The proof of Adleman’s theorem uses a key fact from probability theory:

The Union Bound: For any events £, E>, ..., E}., we have

Pr|E; or E, or...or E; ] < Pr[E;| + Pr|E,] + --- + Pr[E;]

« Example: Suppose Prlice on floor] = 0.3 and Pr|liquid water on floor| = 0.4

e Then Pr[water on floor] < 0.3 + 0.4 = 0.7
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Proof of Adleman’s theorem (BPP € PSIZE)

* Proof: Let L € BPP where L C X~

 Amplificationlemma = There exists a polynomial-time randomized
Turing machine M such that for every n € N and every w € X™:

e Ifw € L, then Pr[M acceptsw]| > 1 — 1/|Z|"
e Ifw & L, then Pr[M rejects w] <1 —1/|Z|"

 Let T(n) be the time complexity of M
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“Good” random bits

e letn € N, letw € 2", and let u € {0, 1}T(™

* We say that u is good for w if:
* w € L and M accepts w when tape 2 is initialized with u, or

* w & L and M rejects w when tape 2 is initialized with u.

* Otherwise, we say that u is bad for w
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Random bits: Good for all inputs simultaneously

Claim: For every n, there exists u, € {0, 1} thatis good for all w € X"

* Proof: By the union bound, if we pick u € {0, 1}7(n) uniformly at random,

there exists w € 2" Z . 1
P < P bad f <z -——=1
' lsuch that u is bad for w] — - rluis bad for w] < 27 ||
wexn

* There is a nonzero chance that u is good for all w, so there must exist at

least one u, thatis good for all w
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