CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

PSIZE

Adleman’s theorem

BPP

e Last class, we showed that P € PSIZE

* We got started proving a stronger theorem:

Adleman’s Theorem: BPP € PSIZE

* Adleman’s theorem is tantalizingly similar to the statement “P = BPP”

Proof of Adleman’s theorem (BPP € PSIZE)

* Proof: Let L € BPP where L € X~

 Amplification lemma = There exists a polynomial-time randomized
Turing machine M such that for everyn € N and every w € X™:

* Ifw € L, then Pr[M acceptsw] > 1 —1/|Z|"

e Ifw & L, then Pr[M rejects w] <1 —1/|Z|"

* Let T(n) be the time complexity of M

Random bits: Good for all inputs simultaneously

Claim: For every n, there exists u, € {0, 1}7™ that is “good” for all w € "

* |.e., if we initialize M with w on tape 1 and u, on tape 2, then it will correctly

accept/reject depending on whether w € L
* We proved the claim last class

* Now let’s use the claim to prove Adleman’s theorem

Constructing the circuit

* Let R = {w#u : M accepts w when tape 2 is initialized with u}

* Then R € P € PSIZE

* Let n € N. Our job is to construct a circuit that computes L,

* Let C be an optimal circuit that computes R,,, wherem =n+ 1+ T(n)

e If uis good for w, then C({(w#u)) = L,,({w))

Constructing the circuit

#u, “hard-coded” into circuit

* C' computes L,,, and it has size

0(m*) =0 ((n + 1+ T(n))k) = poly(n)

Adleman’s theorem and P vs. BPP

* Adleman’s theorem (BPP € PSIZE) does not resolve the question of

whether P = BPP

* However, after seeing Adleman’s theorem, | hope that the conjecture

“P = BPP” is starting to look plausible

* The conjecture can be supported by more compelling evidence, but

it’s beyond the scope of this course

BPP and the Extended Church-Turing Thesis

* Let L be a language

Extended Church-Turing Thesis:
It is physically possible to build a device that

decides L in polynomial time if and only if L € P.

* Assuming P = BPP, the extended Church-Turing thesis survives the

challenge posed by randomized computation!

BPP and the Extended Church-Turing Thesis

e Just in case, the thesis is sometimes revised to allow randomization:

Extended Church-Turing Thesis, version 2:
Let L be a language. It is physically possible to build a device

that decides L in polynomial time if and only if L € BPP.

* This version is immune to the challenge posed by randomization

* However, there is a bigger threat: Quantum Computation

Quantum computing

* Properly studying quantum computing is beyond the scope of this course
* We will circle back to it later to discuss some key facts
* For now, let’s stick with P as our model of efficient computation

* Because of quantum computing, P should probably not be considered the

ultimate model of efficient computation, but it is still a valuable model

10

Which problems
can be solved

through/somputation?
CLASSICAL

Which languages are in P?

Which languages are not in P?

Intractability vs. undecidability

* How can we prove that certain languages are outside P?
e Certainly HALT € P

* |s every decidable language in P?

* This would mean that every algorithm can be modified to make it run in

polynomial time!

14

Intractability vs.

undecidability

All languages

HALT

W

Decidable languages

277

PALINDROMES

15

To prove this theorem, what should we prove? >

A: The function T3 grows faster B: Every Turing machine has time
than functions that are o(T) complexity Q(T3)

e letT:N — N be a ”reasonabl<c; There exists L € TIME(o(T)) D: There exists L € TIME(T?) >

such that L ¢ TIME(T?) such that L ¢ TIME(o(T))

Respond at PollEv.com/whoza or text “whoza” to 22333

Theorem: TIME(o(T)) # TIME(T3) ‘

. ”TIME(O(T))” means the class of languages decidable in time o(T)
* Note: TIME(0(T)) € TIME(T) € TIME(T?)

* Theorem interpretation: Given a little more time, we can solve more problems

16

Proof of the Time Hierarchy Theorem

Let L = {{M) : M rejects (M) within T (|(M)|) steps}

* Claim 1: Let M be any Turing machine with time complexity Ty, (n) = o(T(n)).
Then M does not decide L.

 Proof: Let M’ be a modified version of M, constructed by adding dummy states

to artificially inflate [(M")| until Ty, ([{M")]) < T(|[{M")])

* If M accepts (M'), then (M') ¢ L, and if M rejects M’, then (M') € L!

17

Proof of the Time Hierarchy Theorem

Let L = {{M) : M rejects (M) within T (|(M)|) steps}

o Cla|m 2: L - TIME(TB) Subtle point: How do we know when we’re done?

it rejects
* Exercise: Verify that we can simulate a single step of M using O(T?) steps

* Total time complexity: O(T - T?) = 0(T?3)

18

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Adleman’s theorem
	Slide 3: Proof of Adleman’s theorem (BPP subset or equals PSIZE)
	Slide 4: Random bits: Good for all inputs simultaneously
	Slide 5: Constructing the circuit
	Slide 6: Constructing the circuit
	Slide 7: Adleman’s theorem and P vs. BPP
	Slide 8: BPP and the Extended Church-Turing Thesis
	Slide 9: BPP and the Extended Church-Turing Thesis
	Slide 10: Quantum computing
	Slide 11: Which problems can be solved through computation?
	Slide 12: Which languages are in P?
	Slide 13: Which languages are not in P?
	Slide 14: Intractability vs. undecidability
	Slide 15: Intractability vs. undecidability
	Slide 16: The Time Hierarchy Theorem
	Slide 17: Proof of the Time Hierarchy Theorem
	Slide 18: Proof of the Time Hierarchy Theorem

