
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Adleman’s theorem

• Last class, we showed that P ⊆ PSIZE

• We got started proving a stronger theorem:

• Adleman’s theorem is tantalizingly similar to the statement “P = BPP”

2

Adleman’s Theorem: BPP ⊆ PSIZE

BPP

PSIZE

P

Proof of Adleman’s theorem (BPP ⊆ PSIZE)

• Proof: Let 𝐿 ∈ BPP where 𝐿 ⊆ Σ∗

• Amplification lemma ⇒ There exists a polynomial-time randomized

Turing machine 𝑀 such that for every 𝑛 ∈ ℕ and every 𝑤 ∈ Σ𝑛:

• If 𝑤 ∈ 𝐿, then Pr 𝑀 accepts 𝑤 > 1 − 1/ Σ 𝑛

• If 𝑤 ∉ 𝐿, then Pr 𝑀 rejects 𝑤 < 1 − 1/ Σ 𝑛

• Let 𝑇 𝑛 be the time complexity of 𝑀

3

Random bits: Good for all inputs simultaneously

• I.e., if we initialize 𝑀 with 𝑤 on tape 1 and 𝑢∗ on tape 2, then it will correctly

accept/reject depending on whether 𝑤 ∈ 𝐿

• We proved the claim last class

• Now let’s use the claim to prove Adleman’s theorem

4

Claim: For every 𝑛, there exists 𝑢∗ ∈ 0, 1 𝑇 𝑛 that is “good” for all 𝑤 ∈ Σ𝑛

Constructing the circuit

• Let 𝑅 = 𝑤#𝑢 ∶ 𝑀 accepts 𝑤 when tape 2 is initialized with 𝑢

• Then 𝑅 ∈ P ⊆ PSIZE

• Let 𝑛 ∈ ℕ. Our job is to construct a circuit that computes 𝐿𝑛

• Let 𝐶 be an optimal circuit that computes 𝑅𝑚 where 𝑚 = 𝑛 + 1 + 𝑇 𝑛

• If 𝑢 is good for 𝑤, then 𝐶 𝑤#𝑢 = 𝐿𝑛 𝑤

5

Constructing the circuit

• 𝐶′ computes 𝐿𝑛, and it has size

𝑂 𝑚𝑘 = 𝑂 𝑛 + 1 + 𝑇 𝑛
𝑘

= poly 𝑛

6

𝐶

⋯

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥𝑚𝑟

𝐶′

⋯

𝑥1 𝑥2 𝑥𝑛𝑟

⋯

#𝑢∗ “hard-coded” into circuit

0 1 1 0 1

Adleman’s theorem and P vs. BPP

• Adleman’s theorem (BPP ⊆ PSIZE) does not resolve the question of

whether P = BPP

• However, after seeing Adleman’s theorem, I hope that the conjecture

“P = BPP” is starting to look plausible

• The conjecture can be supported by more compelling evidence, but

it’s beyond the scope of this course

7

BPP and the Extended Church-Turing Thesis

• Let 𝐿 be a language

• Assuming P = BPP, the extended Church-Turing thesis survives the

challenge posed by randomized computation!
8

Extended Church-Turing Thesis:

It is physically possible to build a device that

decides 𝐿 in polynomial time if and only if 𝐿 ∈ P.

BPP and the Extended Church-Turing Thesis

• Just in case, the thesis is sometimes revised to allow randomization:

• This version is immune to the challenge posed by randomization

• However, there is a bigger threat: Quantum Computation

9

Extended Church-Turing Thesis, version 2:

Let 𝐿 be a language. It is physically possible to build a device

that decides 𝐿 in polynomial time if and only if 𝐿 ∈ BPP.

Quantum computing

• Properly studying quantum computing is beyond the scope of this course

• We will circle back to it later to discuss some key facts

• For now, let’s stick with P as our model of efficient computation

• Because of quantum computing, P should probably not be considered the

ultimate model of efficient computation, but it is still a valuable model

10

Which problems

can be solved

through computation?

11

Which languages are in P?

12

Which languages are not in P?

13

Intractability vs. undecidability

• How can we prove that certain languages are outside P?

• Certainly HALT ∉ P

• Is every decidable language in P?

• This would mean that every algorithm can be modified to make it run in

polynomial time!

14

Intractability vs. undecidability

15

P

Decidable languages

All languages

PALINDROMES

HALT

???

The Time Hierarchy Theorem

• Let 𝑇: ℕ → ℕ be a “reasonable” time complexity bound (we will come back to this)

• “TIME 𝑜 𝑇 ” means the class of languages decidable in time 𝑜 𝑇

• Note: TIME 𝑜 𝑇 ⊆ TIME 𝑇 ⊆ TIME 𝑇3

• Theorem interpretation: Given a little more time, we can solve more problems

16

Theorem: TIME 𝑜 𝑇 ≠ TIME 𝑇3

To prove this theorem, what should we prove?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: There exists 𝐿 ∈ TIME 𝑜 𝑇

such that 𝐿 ∉ TIME 𝑇3

A: The function 𝑇3 grows faster
than functions that are 𝑜 𝑇

B: Every Turing machine has time
complexity Ω 𝑇3

D: There exists 𝐿 ∈ TIME 𝑇3

such that 𝐿 ∉ TIME 𝑜 𝑇

Proof of the Time Hierarchy Theorem

• Claim 1: Let 𝑀 be any Turing machine with time complexity 𝑇𝑀 𝑛 = 𝑜 𝑇 𝑛 .

Then 𝑀 does not decide 𝐿.

• Proof: Let 𝑀′ be a modified version of 𝑀, constructed by adding dummy states

to artificially inflate 𝑀′ until 𝑇𝑀 𝑀′ ≤ 𝑇 𝑀′

• If 𝑀 accepts ⟨𝑀′⟩, then 𝑀′ ∉ 𝐿, and if 𝑀 rejects 𝑀′, then 𝑀′ ∈ 𝐿!

17

Let 𝐿 = { 𝑀 ∶ 𝑀 rejects 〈𝑀⟩ within 𝑇 ⟨𝑀⟩ steps}

Proof of the Time Hierarchy Theorem

• Claim 2: 𝐿 ∈ TIME 𝑇3

• Proof: Given ⟨𝑀⟩, we simulate 𝑀 on ⟨𝑀⟩ for 𝑇 𝑀 steps and check whether

it rejects

• Exercise: Verify that we can simulate a single step of 𝑀 using 𝑂 𝑇2 steps

• Total time complexity: 𝑂 𝑇 ⋅ 𝑇2 = 𝑂 𝑇3

18

Let 𝐿 = { 𝑀 ∶ 𝑀 rejects 〈𝑀⟩ within 𝑇 ⟨𝑀⟩ steps}

Subtle point: How do we know when we’re done?

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Adleman’s theorem
	Slide 3: Proof of Adleman’s theorem (BPP subset or equals PSIZE)
	Slide 4: Random bits: Good for all inputs simultaneously
	Slide 5: Constructing the circuit
	Slide 6: Constructing the circuit
	Slide 7: Adleman’s theorem and P vs. BPP
	Slide 8: BPP and the Extended Church-Turing Thesis
	Slide 9: BPP and the Extended Church-Turing Thesis
	Slide 10: Quantum computing
	Slide 11: Which problems can be solved through computation?
	Slide 12: Which languages are in P?
	Slide 13: Which languages are not in P?
	Slide 14: Intractability vs. undecidability
	Slide 15: Intractability vs. undecidability
	Slide 16: The Time Hierarchy Theorem
	Slide 17: Proof of the Time Hierarchy Theorem
	Slide 18: Proof of the Time Hierarchy Theorem

