CMSC 28100

Introduction to Complexity Theory

Spring 2024 Instructor: William Hoza

Adleman's theorem

- Last class, we showed that $P \subseteq PSIZE$
- We got started proving a stronger theorem:

Adleman's Theorem: $BPP \subseteq PSIZE$

• Adleman's theorem is tantalizingly similar to the statement "P = BPP"

Proof of Adleman's theorem (BPP \subseteq PSIZE)

- **Proof:** Let $L \in BPP$ where $L \subseteq \Sigma^*$
- Amplification lemma \Rightarrow There exists a polynomial-time randomized Turing machine *M* such that for every $n \in \mathbb{N}$ and every $w \in \Sigma^n$:
 - If $w \in L$, then $\Pr[M \text{ accepts } w] > 1 1/|\Sigma|^n$
 - If $w \notin L$, then $\Pr[M \text{ rejects } w] < 1 1/|\Sigma|^n$
- Let T(n) be the time complexity of M

Random bits: Good for all inputs simultaneously

Claim: For every *n*, there exists $u_* \in \{0, 1\}^{T(n)}$ that is "good" for all $w \in \Sigma^n$

- I.e., if we initialize M with w on tape 1 and u_* on tape 2, then it will correctly accept/reject depending on whether $w \in L$
- We proved the claim last class
- Now let's use the claim to prove Adleman's theorem

Constructing the circuit

- Let $R = \{w # u : M \text{ accepts } w \text{ when tape 2 is initialized with } u\}$
- Then $R \in P \subseteq PSIZE$
- Let $n \in \mathbb{N}$. Our job is to construct a circuit that computes L_n
- Let C be an optimal circuit that computes R_m where m = n + 1 + T(n)
- If u is good for w, then $C(\langle w \# u \rangle) = L_n(\langle w \rangle)$

Constructing the circuit

• C' computes L_n , and it has size

$$O(m^k) = O\left(\left(n+1+T(n)\right)^k\right) = \operatorname{poly}(n)$$

Adleman's theorem and P vs. BPP

- Adleman's theorem (BPP \subseteq PSIZE) does not resolve the question of whether P = BPP
- However, after seeing Adleman's theorem, I hope that the conjecture "P = BPP" is starting to look plausible
- The conjecture can be supported by more compelling evidence, but it's beyond the scope of this course

BPP and the Extended Church-Turing Thesis

• Let L be a language

Extended Church-Turing Thesis:

It is physically possible to build a device that

decides L in polynomial time if and only if $L \in P$.

• Assuming P = BPP, the extended Church-Turing thesis survives the challenge posed by randomized computation!

BPP and the Extended Church-Turing Thesis

• Just in case, the thesis is sometimes revised to allow randomization:

Extended Church-Turing Thesis, version 2:

Let L be a language. It is physically possible to build a device that decides L in polynomial time if and only if $L \in BPP$.

- This version is immune to the challenge posed by randomization
- However, there is a bigger threat: Quantum Computation

Quantum computing

- Properly studying quantum computing is beyond the scope of this course
- We will circle back to it later to discuss some key facts
- For now, let's stick with P as our model of efficient computation
- Because of quantum computing, P should probably not be considered the ultimate model of efficient computation, but it is still a valuable model

Which problems

can be solved

through computation?

Which languages are in P?

Which languages are not in P?

Intractability vs. undecidability

- How can we prove that certain languages are outside P?
- Certainly HALT \notin P
- Is every decidable language in P?
 - This would mean that every algorithm can be modified to make it run in polynomial time!

Intractability vs. undecidability

- "TIME(o(T))" means the class of languages decidable in time o(T)
- Note: $\text{TIME}(o(T)) \subseteq \text{TIME}(T) \subseteq \text{TIME}(T^3)$
- Theorem interpretation: Given a little more time, we can solve more problems

Proof of the Time Hierarchy Theorem

Let $L = \{ \langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$

- Claim 1: Let *M* be any Turing machine with time complexity $T_M(n) = o(T(n))$. Then *M* does not decide *L*.
- **Proof:** Let M' be a modified version of M, constructed by adding dummy states to artificially inflate $|\langle M' \rangle|$ until $T_M(|\langle M' \rangle|) \leq T(|\langle M' \rangle|)$
- If M accepts $\langle M' \rangle$, then $\langle M' \rangle \notin L$, and if M rejects M', then $\langle M' \rangle \in L!$

Proof of the Time Hierarchy Theorem

Let $L = \{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$

- Claim 2: $L \in TIME(T^3)$ Subtle point: How do we know when we're done?
- **Proof:** Given $\langle M \rangle$, we simulate M on $\langle M \rangle$ for $T(|\langle M \rangle|)$ steps and check whether it rejects
- Exercise: Verify that we can simulate a single step of M using $O(T^2)$ steps
- Total time complexity: $O(T \cdot T^2) = O(T^3)$