CMSC 28100

Introduction to
 Complexity Theory

Spring 2024
Instructor: William Hoza

Adleman's theorem

- Last class, we showed that P \subseteq PSIZE
- We got started proving a stronger theorem:

Adleman's Theorem: BPP \subseteq PSIZE

- Adleman's theorem is tantalizingly similar to the statement "P = BPP"

Proof of Adleman's theorem (BPP \subseteq PSIZE)

- Proof: Let $L \in$ BPP where $L \subseteq \Sigma^{*}$
- Amplification lemma \Rightarrow There exists a polynomial-time randomized

Turing machine M such that for every $n \in \mathbb{N}$ and every $w \in \Sigma^{n}$:

- If $w \in L$, then $\operatorname{Pr}[M$ accepts $w]>1-1 /|\Sigma|^{n}$
- If $w \notin L$, then $\operatorname{Pr}[M$ rejects $w]<1-1 /|\Sigma|^{n}$
- Let $T(n)$ be the time complexity of M

Random bits: Good for all inputs simultaneously

Claim: For every n, there exists $u_{*} \in\{0,1\}^{T(n)}$ that is "good" for all $w \in \Sigma^{n}$

- I.e., if we initialize M with w on tape 1 and u_{*} on tape 2 , then it will correctly accept/reject depending on whether $w \in L$
- We proved the claim last class
- Now let's use the claim to prove Adleman's theorem

Constructing the circuit

- Let $R=\{w \# u: M$ accepts w when tape 2 is initialized with $u\}$
- Then $R \in \mathrm{P} \subseteq$ PSIZE
- Let $n \in \mathbb{N}$. Our job is to construct a circuit that computes L_{n}
- Let C be an optimal circuit that computes R_{m} where $m=n+1+T(n)$
- If u is good for w, then $C(\langle w \# u\rangle)=L_{n}(\langle w\rangle)$

Constructing the circuit

\# u_{*} "hard-coded" into circuit

- C^{\prime} computes L_{n}, and it has size

$$
O\left(m^{k}\right)=O\left((n+1+T(n))^{k}\right)=\operatorname{poly}(n)
$$

Adleman's theorem and P vs. BPP

- Adleman's theorem (BPP \subseteq PSIZE) does not resolve the question of whether $\mathrm{P}=\mathrm{BPP}$
- However, after seeing Adleman's theorem, I hope that the conjecture " $\mathrm{P}=\mathrm{BPP}$ " is starting to look plausible
- The conjecture can be supported by more compelling evidence, but it's beyond the scope of this course

BPP and the Extended Church-Turing Thesis

- Let L be a language

Extended Church-Turing Thesis:

It is physically possible to build a device that decides L in polynomial time if and only if $L \in \mathrm{P}$.

- Assuming $P=B P P$, the extended Church-Turing thesis survives the challenge posed by randomized computation!

BPP and the Extended Church-Turing Thesis

- Just in case, the thesis is sometimes revised to allow randomization:

Extended Church-Turing Thesis, version 2:

Let L be a language. It is physically possible to build a device that decides L in polynomial time if and only if $L \in B P P$.

- This version is immune to the challenge posed by randomization
- However, there is a bigger threat: Quantum Computation

Quantum computing

- Properly studying quantum computing is beyond the scope of this course
- We will circle back to it later to discuss some key facts
- For now, let's stick with P as our model of efficient computation
- Because of quantum computing, P should probably not be considered the ultimate model of efficient computation, but it is still a valuable model

Which problems

can be solved

through computation?
 CLASSICAL

Which languages are in P ?

Which languages are not in P ?

Intractability vs. undecidability

- How can we prove that certain languages are outside P?
- Certainly HALT $\notin \mathrm{P}$
- Is every decidable language in P?
- This would mean that every algorithm can be modified to make it run in polynomial time!

Intractability vs. undecidability

The Time Hierarc

Respond at PollEv.com/whoza or text "whoza" to 22333 Theorem: $\operatorname{TIME}(o(T)) \neq \operatorname{TIME}\left(T^{3}\right)$

- "TIME $(o(T))$ " means the class of languages decidable in time $o(T)$
- Note: $\operatorname{TIME}(o(T)) \subseteq \operatorname{TIME}(T) \subseteq \operatorname{TIME}\left(T^{3}\right)$
- Theorem interpretation: Given a little more time, we can solve more problems

Proof of the Time Hierarchy Theorem

$$
\text { Let } L=\{\langle M\rangle: M \text { rejects }\langle M\rangle \text { within } T(|\langle M\rangle|) \text { steps }\}
$$

- Claim 1: Let M be any Turing machine with time complexity $T_{M}(n)=o(T(n))$. Then M does not decide L.
- Proof: Let M^{\prime} be a modified version of M, constructed by adding dummy states to artificially inflate $\left|\left\langle M^{\prime}\right\rangle\right|$ until $T_{M}\left(\left|\left\langle M^{\prime}\right\rangle\right|\right) \leq T\left(\left|\left\langle M^{\prime}\right\rangle\right|\right)$
- If M accepts $\left\langle M^{\prime}\right\rangle$, then $\left\langle M^{\prime}\right\rangle \notin L$, and if M rejects M^{\prime}, then $\left\langle M^{\prime}\right\rangle \in L$!

Proof of the Time Hierarchy Theorem

$$
\text { Let } L=\{\langle M\rangle: M \text { rejects }\langle M\rangle \text { within } T(|\langle M\rangle|) \text { steps }\}
$$

- Claim 2: $L \in \operatorname{TIME}\left(T^{3}\right)$ Subtle point: How do we know when we're done?
- Proof: Given $\langle M\rangle$, we, ${ }^{\text {t }}$ simulate M on $\langle M\rangle$ for $T(|\langle M\rangle|)$ steps, and check whether it rejects
- Exercise: Verify that we can simulate a single step of M using $O\left(T^{2}\right)$ steps
- Total time complexity: $O\left(T \cdot T^{2}\right)=O\left(T^{3}\right)$

