CMSC 28100

Introduction to Complexity Theory

Spring 2024 Instructor: William Hoza

Which problems

can be solved

through computation?

Which languages are in P?

Which languages are not in P?

The Time Hierarchy Theorem

• Let $T: \mathbb{N} \to \mathbb{N}$ be a "reasonable" time complexity bound (we will come back to this)

Theorem:
$$TIME(o(T)) \neq TIME(T^3)$$

• Given a little more time, we can solve more problems

Proof of the Time Hierarchy Theorem

Let $L = \{ \langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$

- Claim 1: $L \notin TIME(o(T))$
- Proof: Last class

Proof of the Time Hierarchy Theorem

Let $L = \{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$

- Claim 2: $L \in TIME(T^3)$ Subtle point: How do we know when we're done?
- **Proof:** Given $\langle M \rangle$, we simulate M on $\langle M \rangle$ for $T(|\langle M \rangle|)$ steps and check whether it rejects
- Exercise: Verify that we can simulate a single step of M using $O(T^2)$ steps
- Total time complexity: $O(T \cdot T^2) = O(T^3)$

Time-constructible functions

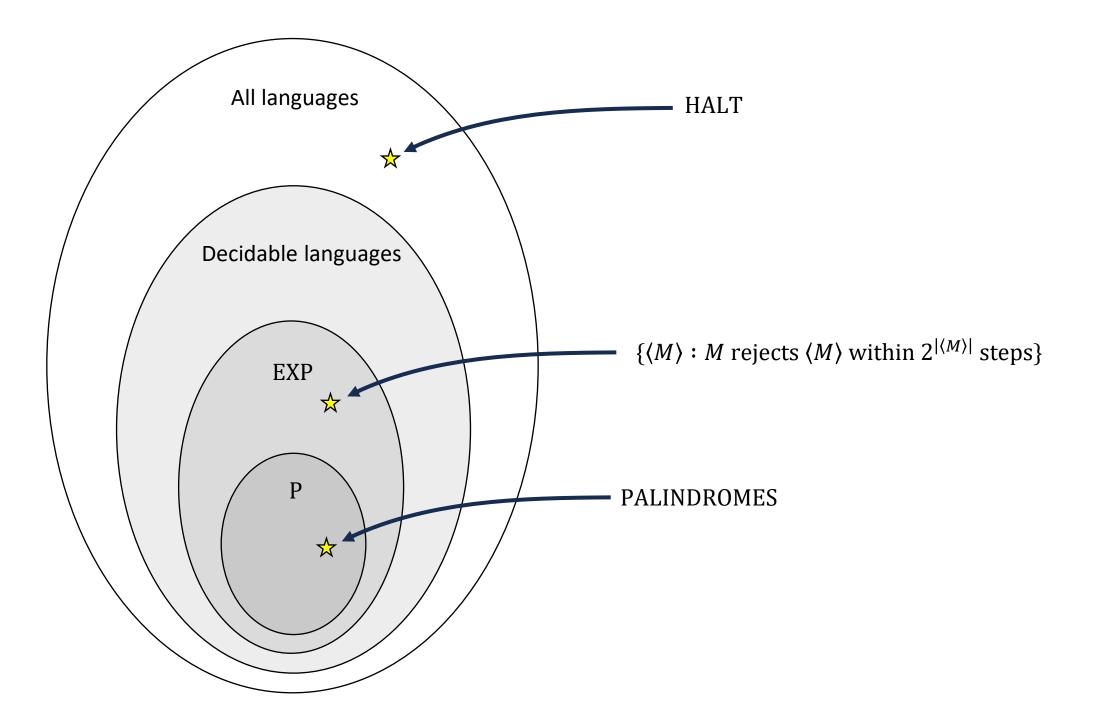
- We say that a function $T: \mathbb{N} \to \mathbb{N}$ is time-constructible if there is a multi-tape Turing machine M such that
 - Given input 1^n , M halts with $1^{T(n)}$ written on tape 2
 - *M* has time complexity O(T(n))
- The time hierarchy theorem applies to any time-constructible T
- All "reasonable" time complexity bounds (e.g., 5n, n², 2ⁿ, etc.) are timeconstructible

Corollary:
$$P \neq EXP$$

• Proof:

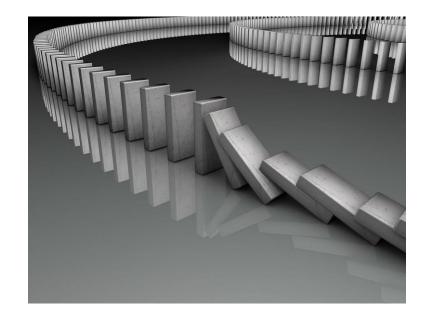
$$\mathsf{P} = \bigcup_{k=1}^{\infty} \mathsf{TIME}(n^k) \subseteq \mathsf{TIME}(o(2^n)) \subsetneq \mathsf{TIME}(2^{3n}) \subseteq \mathsf{EXP}$$

• Interpretation: There are some exponential-time algorithms that cannot be converted into polynomial-time algorithms



"Natural" languages outside P

• Now we know that there exists a decidable language outside P



- However, the language seems a bit "artificial" / "contrived"
- What else is outside P?
- Can we prove that some "natural" decidable languages are outside P?

Polynomial-time reductions

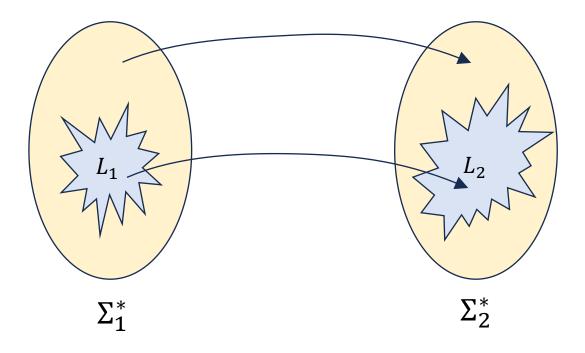
- Let L_1 and L_2 be languages over the alphabets Σ_1 and Σ_2 respectively
- **Definition:** A poly-time mapping reduction from L_1 to L_2 is a function
 - $f: \Sigma_1^* \to \Sigma_2^*$ such that
 - For every $w \in L_1$, we have $f(w) \in L_2$ ("YES maps to YES")
 - For every $w \in \Sigma_1^* \setminus L_1$, we have $f(w) \notin L_2$ ("NO maps to NO")
 - The function f is poly-time computable, i.e., there exists a TM M such that for every

 $w \in \Sigma_1^*$, *M* halts on *w* within poly(|w|) steps with $\Diamond f(w)$ written on its tape

Polynomial-time reductions

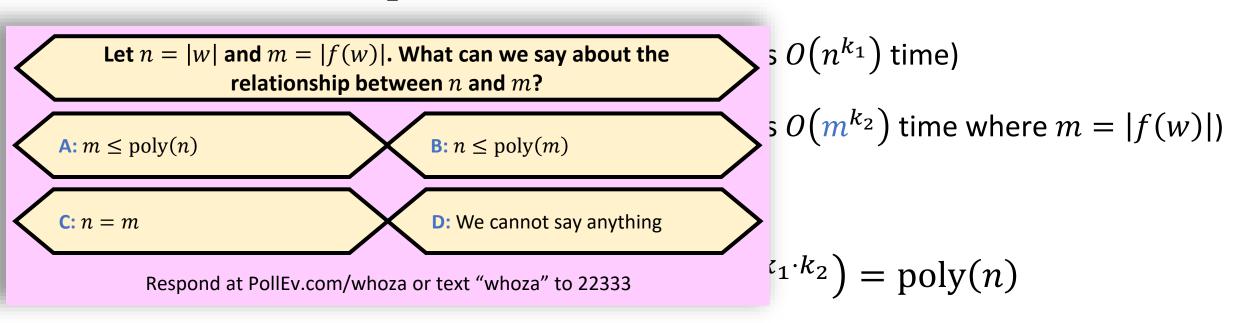
• A poly-time mapping reduction from L_1 to L_2 is a way of efficiently

converting instances of L_1 into equivalent instances of L_2

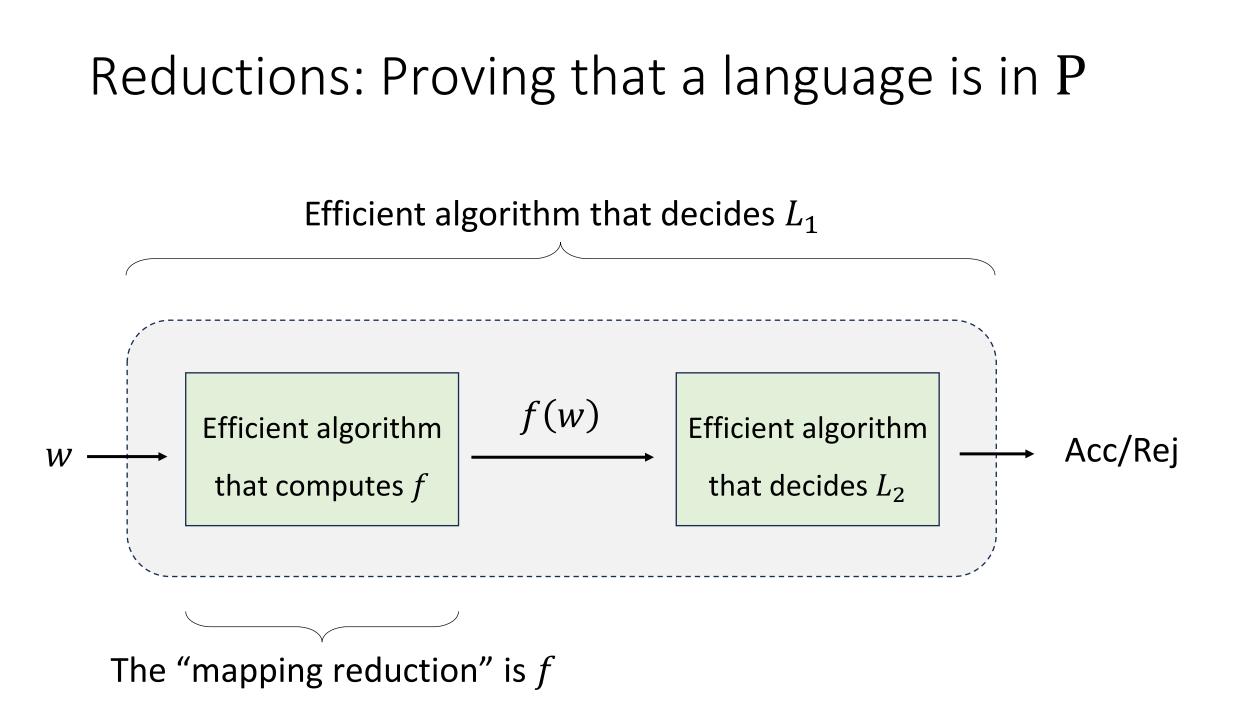


Reductions: Proving that a language is in P

- Suppose there exists a poly-time mapping reduction f from L_1 to L_2
- Claim: If $L_2 \in P$, then $L_1 \in P$
- **Proof:** Given $w \in \Sigma_1^*$:



14



Reductions: Proving that a language is not in P

- Suppose there exists a poly-time mapping reduction f from L_1 to L_2
- Claim: If $L_1 \notin P$, then $L_2 \notin P$
- **Proof:** If L_2 were in P, then L_1 would be in P

Using reductions to prove intractability

- Strategy for proving that some language L is not in P:
 - Identify a suitable language L_{HARD} that we previously proved is not in P
 - Design a poly-time mapping reduction f from L_{HARD} to L
 - **A** Make sure you do the reduction in the correct direction!
- The amazing thing about this strategy is that the existence of one efficient algorithm implies the nonexistence of another!

The time-bounded halting problem

- Let BOUNDED-HALT = { $\langle M, w, T \rangle$: *M* halts on *w* within *T* steps}
- Exercise: By simulating M on w, one can decide BOUNDED-HALT in time $O(|\langle M \rangle| \cdot T^2)$
- Does this mean BOUNDED-HALT \in P?
- No! If we wanted a polynomial-time algorithm, then our time budget would be poly(n), where $n = |\langle M, w, T \rangle| \approx |\langle M \rangle| + |\langle w \rangle| + \log T$

Time-bounded halting problem

- Let BOUNDED-HALT = { $\langle M, w, T \rangle$: *M* halts on *w* within *T* steps}
- **Claim:** BOUNDED-HALT \notin P
- **Proof:** Let $L_{\text{HARD}} = \{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } 2^{|\langle M \rangle|} \text{ steps} \}$
- Mapping reduction: $f(\langle M \rangle) = \langle M', w, T \rangle$, where $w = \langle M \rangle$, $T = 2^{|\langle M \rangle|}$, and M' is

a modified version of M in which q_{accept} has been replaced with looping

- YES maps to YES: If M rejects $\langle M \rangle$ within $2^{|\langle M \rangle|}$ steps, then M' halts on w within T steps \checkmark
- NO maps to NO: If M does not reject $\langle M \rangle$ within $2^{|\langle M \rangle|}$ steps, then M' does not halt on w within T steps \checkmark

• *f* is poly-time computable \checkmark Note that $\langle T \rangle = 10^{|\langle M \rangle|}$.

How hard is hard?

- We can say more than merely "BOUNDED-HALT \notin P"
- We can more precisely characterize the complexity of BOUNDED-HALT

EXP-hardness

- **Definition:** Let *L* be a language. Suppose that for every $L' \in EXP$, there is a poly-time mapping reduction from *L'* to *L*. In this case, we say that *L* is EXP-hard
- "L is EXP-hard" means "L is at least as hard as any language in EXP"

EXP-completeness

- **Definition:** Let *L* be a language. We say that *L* is EXP-complete if *L* is EXP-hard and $L \in EXP$
- The EXP-complete languages are the hardest languages in EXP
- If *L* is EXP-complete, then the language *L* can be said to "capture" / "express" the entire complexity class EXP

BOUNDED-HALT is **EXP**-complete

- Claim: BOUNDED-HALT is EXP-complete
- **Proof:** First, let's show that BOUNDED-HALT \in EXP
- Algorithm: Given $\langle M, w, T \rangle$, we simulate M on w for T steps
- Exercise: This algorithm has time complexity

$$O(|\langle M \rangle| \cdot T^2) = O(n \cdot (2^n)^2) = 2^{O(n)}$$