
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Which problems

can be solved

through computation?

2

Which languages are in P?

3

Which languages are not in P?

4

The Time Hierarchy Theorem

• Let 𝑇: ℕ → ℕ be a “reasonable” time complexity bound (we will come back to this)

• Given a little more time, we can solve more problems

5

Theorem: TIME 𝑜 𝑇 ≠ TIME 𝑇3

Proof of the Time Hierarchy Theorem

• Claim 1: 𝐿 ∉ TIME 𝑜 𝑇

• Proof: Last class

6

Let 𝐿 = { 𝑀 ∶ 𝑀 rejects 〈𝑀⟩ within 𝑇 ⟨𝑀⟩ steps}

Proof of the Time Hierarchy Theorem

• Claim 2: 𝐿 ∈ TIME 𝑇3

• Proof: Given ⟨𝑀⟩, we simulate 𝑀 on ⟨𝑀⟩ for 𝑇 𝑀 steps and check whether

it rejects

• Exercise: Verify that we can simulate a single step of 𝑀 using 𝑂 𝑇2 steps

• Total time complexity: 𝑂 𝑇 ⋅ 𝑇2 = 𝑂 𝑇3

7

Let 𝐿 = { 𝑀 ∶ 𝑀 rejects 〈𝑀⟩ within 𝑇 ⟨𝑀⟩ steps}

Subtle point: How do we know when we’re done?

Time-constructible functions

• We say that a function 𝑇: ℕ → ℕ is time-constructible if there is a multi-tape

Turing machine 𝑀 such that

• Given input 1𝑛, 𝑀 halts with 1𝑇 𝑛 written on tape 2

• 𝑀 has time complexity 𝑂 𝑇 𝑛

• The time hierarchy theorem applies to any time-constructible 𝑇

• All “reasonable” time complexity bounds (e.g., 5𝑛, 𝑛2, 2𝑛, etc.) are time-

constructible

8

• Proof:

P = ራ

𝑘=1

∞

TIME 𝑛𝑘 ⊆ TIME 𝑜 2𝑛 ⊊ TIME 23𝑛 ⊆ EXP

• Interpretation: There are some exponential-time algorithms that

cannot be converted into polynomial-time algorithms

9

Corollary: P ≠ EXP

10

P

Decidable languages

All languages

PALINDROMES

HALT

{ 𝑀 ∶ 𝑀 rejects 𝑀 within 2 𝑀 steps}
EXP

“Natural” languages outside P

• Now we know that there exists a decidable

language outside P

• However, the language seems a bit “artificial” / “contrived”

• What else is outside P?

• Can we prove that some “natural” decidable languages are outside P?

11

Polynomial-time reductions

• Let 𝐿1 and 𝐿2 be languages over the alphabets Σ1 and Σ2 respectively

• Definition: A poly-time mapping reduction from 𝐿1 to 𝐿2 is a function

𝑓: Σ1
∗ → Σ2

∗ such that

• For every 𝑤 ∈ 𝐿1, we have 𝑓 𝑤 ∈ 𝐿2 (“YES maps to YES”)

• For every 𝑤 ∈ Σ1
∗ ∖ 𝐿1, we have 𝑓 𝑤 ∉ 𝐿2 (“NO maps to NO”)

• The function 𝑓 is poly-time computable, i.e., there exists a TM 𝑀 such that for every

𝑤 ∈ Σ1
∗, 𝑀 halts on 𝑤 within poly 𝑤 steps with ♢𝑓 𝑤 written on its tape

12

Polynomial-time reductions

• A poly-time mapping reduction from 𝐿1 to 𝐿2 is a way of efficiently

converting instances of 𝐿1 into equivalent instances of 𝐿2

13

Σ1
∗ Σ2

∗

𝐿1 𝐿2

Reductions: Proving that a language is in P

• Suppose there exists a poly-time mapping reduction 𝑓 from 𝐿1 to 𝐿2

• Claim: If 𝐿2 ∈ P, then 𝐿1 ∈ P

• Proof: Given 𝑤 ∈ Σ1
∗:

1. Compute 𝑓 𝑤 ∈ Σ2
∗ (this takes 𝑂 𝑛𝑘1 time)

2. Check whether 𝑓 𝑤 ∈ 𝐿2 (this takes 𝑂 𝑚𝑘2 time where 𝑚 = 𝑓 𝑤)

3. If so, accept; otherwise, reject.

• 𝑚 ≤ 𝑂 𝑛𝑘1 , so the total time is 𝑂 𝑛𝑘1 + 𝑛𝑘1⋅𝑘2 = poly 𝑛
14

Let 𝑛 = 𝑤 and 𝑚 = 𝑓 𝑤 . What can we say about the
relationship between 𝑛 and 𝑚?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: 𝑛 = 𝑚

B: 𝑛 ≤ poly 𝑚

D: We cannot say anything

A: 𝑚 ≤ poly 𝑛

Reductions: Proving that a language is in P

15

Efficient algorithm

that computes 𝑓

Efficient algorithm

that decides 𝐿2

𝑤
𝑓 𝑤

Acc/Rej

Efficient algorithm that decides 𝐿1

The “mapping reduction” is 𝑓

Reductions: Proving that a language is not in P

• Suppose there exists a poly-time mapping reduction 𝑓 from 𝐿1 to 𝐿2

• Claim: If 𝐿1 ∉ P, then 𝐿2 ∉ P

• Proof: If 𝐿2 were in P, then 𝐿1 would be in P

16

Using reductions to prove intractability

• Strategy for proving that some language 𝐿 is not in P:

• Identify a suitable language 𝐿HARD that we previously proved is not in P

• Design a poly-time mapping reduction 𝑓 from 𝐿HARD to 𝐿

• Make sure you do the reduction in the correct direction!

• The amazing thing about this strategy is that the existence of one

efficient algorithm implies the nonexistence of another!

17

The time-bounded halting problem

• Let BOUNDED-HALT = { 𝑀, 𝑤, 𝑇 ∶ 𝑀 halts on 𝑤 within 𝑇 steps}

• Exercise: By simulating 𝑀 on 𝑤, one can decide BOUNDED-HALT in

time 𝑂 𝑀 ⋅ 𝑇2

• Does this mean BOUNDED-HALT ∈ P?

• No! If we wanted a polynomial-time algorithm, then our time budget

would be poly 𝑛 , where 𝑛 = 𝑀, 𝑤, 𝑇 ≈ 𝑀 + 𝑤 + log 𝑇

18

Time-bounded halting problem

• Let BOUNDED-HALT = { 𝑀, 𝑤, 𝑇 ∶ 𝑀 halts on 𝑤 within 𝑇 steps}

• Claim: BOUNDED-HALT ∉ P

• Proof: Let 𝐿HARD = { 𝑀 ∶ 𝑀 rejects 𝑀 within 2 𝑀 steps}

• Mapping reduction: 𝑓 𝑀 = ⟨𝑀′, 𝑤, 𝑇⟩, where 𝑤 = 𝑀 , 𝑇 = 2 𝑀 , and 𝑀′ is

a modified version of 𝑀 in which 𝑞accept has been replaced with looping

19

• YES maps to YES: If 𝑀 rejects 𝑀 within 2 𝑀 steps, then 𝑀′ halts on 𝑤 within 𝑇 steps

• NO maps to NO: If 𝑀 does not reject 𝑀 within 2| 𝑀 | steps, then 𝑀′ does not halt on 𝑤 within 𝑇 steps

• 𝑓 is poly-time computable Note that 𝑇 = 10 𝑀 .

How hard is hard?

• We can say more than merely “BOUNDED-HALT ∉ P”

• We can more precisely characterize the complexity of BOUNDED-HALT

20

EXP-hardness

• Definition: Let 𝐿 be a language. Suppose that for every 𝐿′ ∈ EXP,

there is a poly-time mapping reduction from 𝐿′ to 𝐿. In this case, we

say that 𝐿 is EXP-hard

• “𝐿 is EXP-hard” means “𝐿 is at least as hard as any language in EXP”

21

EXP-completeness

• Definition: Let 𝐿 be a language. We say that 𝐿 is EXP-complete if

𝐿 is EXP-hard and 𝐿 ∈ EXP

• The EXP-complete languages are the hardest languages in EXP

• If 𝐿 is EXP-complete, then the language 𝐿 can be said to

“capture” / “express” the entire complexity class EXP

22

BOUNDED-HALT is EXP-complete

• Claim: BOUNDED-HALT is EXP-complete

• Proof: First, let’s show that BOUNDED-HALT ∈ EXP

• Algorithm: Given ⟨𝑀, 𝑤, 𝑇⟩, we simulate 𝑀 on 𝑤 for 𝑇 steps

• Exercise: This algorithm has time complexity

𝑂 𝑀 ⋅ 𝑇2 = 𝑂 𝑛 ⋅ 2𝑛 2 = 2𝑂 𝑛

23

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Which problems can be solved through computation?
	Slide 3: Which languages are in P?
	Slide 4: Which languages are not in P?
	Slide 5: The Time Hierarchy Theorem
	Slide 6: Proof of the Time Hierarchy Theorem
	Slide 7: Proof of the Time Hierarchy Theorem
	Slide 8: Time-constructible functions
	Slide 9
	Slide 10
	Slide 11: “Natural” languages outside P
	Slide 12: Polynomial-time reductions
	Slide 13: Polynomial-time reductions
	Slide 14: Reductions: Proving that a language is in P
	Slide 15: Reductions: Proving that a language is in P
	Slide 16: Reductions: Proving that a language is not in P
	Slide 17: Using reductions to prove intractability
	Slide 18: The time-bounded halting problem
	Slide 19: Time-bounded halting problem
	Slide 20: How hard is hard?
	Slide 21: EXP-hardness
	Slide 22: EXP-completeness
	Slide 23: BOUNDED‑HALT is EXP-complete

