CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Which problems
can be solved

through/somputation?
CLASSICAL

Which languages are in P?

Which languages are not in P?

The Time Hierarchy Theorem

* LetT:N — N be a “reasonable” time complexity bound (we will come back to this)

Theorem: TIME(o(T)) # TIME(T?)

* Given a little more time, we can solve more problems

Proof of the Time Hierarchy Theorem

Let L = {{M) : M rejects (M) within T(|(M)|) steps}

» Claim 1: L ¢ TIME(o(T))

* Proof: Last class

Proof of the Time Hierarchy Theorem

Let L = {{M) : M rejects (M) within T (|(M)|) steps}

o Cla|m 2: L - TIME(TB) Subtle point: How do we know when we’re done?

it rejects
* Exercise: Verify that we can simulate a single step of M using O(T?) steps

» Total time complexity: O(T - T4) = 0(T?)

Time-constructible functions

 We say that a function T: N = N is time-constructible if there is a multi-tape

Turing machine M such that
* Given input 1™, M halts with 17 written on tape 2

* M has time complexity O(T(n))
* The time hierarchy theorem applies to any time-constructible T

* All “reasonable” time complexity bounds (e.g., 51, n?, 2™, etc.) are time-

constructible

Corollary: P = EXP

* Proof:

P = U TIME(n*) € TIME(0(2")) & TIME(23") < EXP
k=1

* Interpretation: There are some exponential-time algorithms that

cannot be converted into polynomial-time algorithms

All languages

w

Decidable languages

HALT

{(M) : M rejects (M) within 2™! steps}

PALINDROMES

10

“Natural” languages outside P

e Now we know that there exists a decidable

language outside P

m\mm TR

T““ ““““““ plldaaidin L f mmll‘fr "’”

A-«f-;n W

\'\‘

* However, the language seems a bit “artificial” / “contrived”

e What else is outside P?

e Can we prove that some “natura

I”

decidable languages are outside P?

11

Polynomial-time reductions

* Let L; and L, be languages over the alphabets X, and X, respectively

* Definition: A poly-time mapping reduction from L, to L, is a function
f:Z] = X5 such that
* Foreveryw € Ly, we have f(w) € L, (“YES maps to YES”)
* Foreveryw € X7 \ L, we have f(w) € L, (“NO maps to NO”)

* The function f is poly-time computable, i.e., there exists a TM M such that for every

w € Zi, M halts on w within poly(|w|) steps with ¢ f(w) written on its tape

12

Polynomial-time reductions

* A poly-time mapping reduction from L, to L, is a way of efficiently

converting instances of L, into equivalent instances of L,

13

Reductions: Proving that a language is in P

* Suppose there exists a poly-time mapping reduction f from L; to L,
* Claim:If L, € P,thenL; € P

* Proof: Given w € X7:

< Letn = |w| and m = |f(w)|. What can we say about the > 5 O(nkl) time)

relationship between n and m?

K2\ +i _
<A:mSpoly(n) ><B:nSpoly(m) >5 O(m) time where m |f(W)|)
< Cn=m >< D: We cannot say anything >

(1K —
Respond at PollEv.com/whoza or text “whoza” to 22333 1 2) = pOlY(n)

14

Reductions: Proving that a language is in P

Efficient algorithm that decides L,

P e e e T e e e e e e e T T T N I il T T T

Efficient algorithm f(W)

that computes f

Efficient algorithm

that decides L,

__

The “mapping reduction” is f

Reductions: Proving that a language is not in P

* Suppose there exists a poly-time mapping reduction f from L, to L,
* Claim:If L, € P,then L, &P

* Proof: If L, were in P, then L; would be in P

16

Using reductions to prove intractability

 Strategy for proving that some language L is not in P:

* Identify a suitable language Lyarp that we previously proved is not in P
* Design a poly-time mapping reduction f from Lyarp to L

* A Make sure you do the reduction in the correct direction!

* The amazing thing about this strategy is that the existence of one

efficient algorithm implies the nonexistence of another!

17

The time-bounded halting problem

* Let BOUNDED-HALT = {{M,w, T) : M halts on w within T steps}

* Exercise: By simulating M on w, one can decide BOUNDED-HALT in
time O(|{M)]| - T?)

 Does this mean BOUNDED-HALT € P?

* No! If we wanted a polynomial-time algorithm, then our time budget

would be poly(n), wheren = [(M,w, T)| = |[{(M)| + [{w)| + log T

18

Time-bounded halting problem

* Let BOUNDED-HALT = {{M,w, T) : M halts on w within T steps}

* Claim: BOUNDED-HALT € P

* Proof: Let Lyyarp = {{M) : M rejects (M) within 2/™| steps}

* Mapping reduction: f({M)) = (M',w,T), wherew = (M), T = 21M gnd M’ is

a modified version of M in which q,¢cept has been replaced with looping

* YES maps to YES: If M rejects (M) within 21 steps, then M’ halts on w within T steps &/

« NO maps to NO: If M does not reject (M) within 2™l steps, then M’ does not halt on w within T steps «/

* fis poly-time computable &/ Note that (T) = 101",

19

How hard is hard?

* We can say more than merely “BOUNDED-HALT & P”

* We can more precisely characterize the complexity of BOUNDED-HALT

20

EXP-hardness

* Definition: Let L be a language. Suppose that for every L' € EXP,
there is a poly-time mapping reduction from L’ to L. In this case, we

say that L is EXP-hard

e “L is EXP-hard” means “L is at least as hard as any language in EXP”

21

EXP-completeness

* Definition: Let L be a language. We say that L is EXP-complete if
L is EXP-hard and L € EXP

* The EXP-complete languages are the hardest languages in EXP

* If L is EXP-complete, then the language L can be said to

“capture” / “express” the entire complexity class EXP

22

BOUNDED-HALT is EXP-complete

e Claim: BOUNDED-HALT is EXP-complete
* Proof: First, let’s show that BOUNDED-HALT € EXP
* Algorithm: Given (M, w, T), we simulate M on w for T steps

* Exercise: This algorithm has time complexity

O(M)| - T?) = 0(n - (2™)?) = 20

23

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Which problems can be solved through computation?
	Slide 3: Which languages are in P?
	Slide 4: Which languages are not in P?
	Slide 5: The Time Hierarchy Theorem
	Slide 6: Proof of the Time Hierarchy Theorem
	Slide 7: Proof of the Time Hierarchy Theorem
	Slide 8: Time-constructible functions
	Slide 9
	Slide 10
	Slide 11: “Natural” languages outside P
	Slide 12: Polynomial-time reductions
	Slide 13: Polynomial-time reductions
	Slide 14: Reductions: Proving that a language is in P
	Slide 15: Reductions: Proving that a language is in P
	Slide 16: Reductions: Proving that a language is not in P
	Slide 17: Using reductions to prove intractability
	Slide 18: The time-bounded halting problem
	Slide 19: Time-bounded halting problem
	Slide 20: How hard is hard?
	Slide 21: EXP-hardness
	Slide 22: EXP-completeness
	Slide 23: BOUNDED‑HALT is EXP-complete

