CMSC 28100

Introduction to Complexity Theory

Spring 2024
Instructor: William Hoza

Problem set 1

- Problem set 1 is available in Canvas
- If you aren't officially enrolled in the course, send me an email. I'll add you to Canvas so you can access the homework
- Office hours (Thursday, Friday, Monday) are a good place to find study partners / homework collaborators

Which problems

can be solved
through computation?

Turing machines

- In each step, the machine decides
- What to write
- Which direction to move the head (left or right)
- The new state
- The decision is based only on the current state and the observed symbol

Defining Turing machines rigorously

- Def: A Turing machine is a 9-tuple $M=\left(Q, \Sigma, \Gamma, \diamond, \sqcup, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ such that
- Q is a finite set (the set of "states")
- Σ and Γ are alphabets (the "input alphabet" and the "tape alphabet")
- We have $\Sigma \cup\{\diamond, \sqcup\} \subseteq \Gamma$ and $\sqcup, \diamond \notin \Sigma$
- δ is a function $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$ (the "transition function")
- If $\delta(q, \diamond)=\left(q^{\prime}, b^{\prime}, D\right)$, then $b^{\prime}=\diamond$ and $D=\mathrm{R}$
- If $\delta(q, b)=\left(q^{\prime}, b^{\prime}, D\right)$ and $b \neq \diamond$, then $b^{\prime} \neq \diamond$
© Warning: The definition in the textbook is slightly different. Sorry! (The two models are equivalent.)
- $q_{0}, q_{\text {accept }}, q_{\text {reject }} \in Q$ and $q_{\text {accept }} \neq q_{\text {reject }}$.

State diagram

- Each node represents a state
- An arc from q to q^{\prime} labeled " $b \rightarrow b^{\prime}, D$ " means $\delta(q, b)=\left(q^{\prime}, b, D\right)$

- The label " $b \rightarrow D$ " is shorthand for " $b \rightarrow b, D$ "
- An arc labeled " $a, b \rightarrow \ldots$ " represents two arcs (" $a \rightarrow \ldots$ " and " $b \rightarrow \ldots$ ")

Defining TM computation rigorously

- The transition function δ describes the local evolution of the computation
- Now let's precisely describe the global evolution of the computation

Configurations of a Turing machine

- Let $M=\left(Q, \Sigma, \Gamma, \diamond, \sqcup, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be a Turing machine
- A configuration of M is a triple (u, q, v) where $u \in \Gamma^{*}, q \in Q$, and $v \in \Gamma^{*}$. Interpretation:
- The tape currently contains $u v$ பபபப \cdots
- The machine is currently in state q and the head is currently located in cell $|u|+1$

Configuration shorthand

- Instead of (u, q, v), we often write $u q v$
- We think of $u q v$ as a string over the alphabet $\Gamma \cup Q$
- This shorthand can only be used if $Q \cap \Gamma=\emptyset$, which we can assume without loss of generality by renaming states if necessary

Equivalent configurations

- Note: $u q v$ and $u q v \sqcup$ are technically two distinct configurations...
- However, they represent the exact same scenario
- We can say that they are "equivalent"
- (A configuration is a finite string, even though the tape is infinitely long)

The initial configuration

- Let $w \in \Sigma^{*}$ be an input
- The initial configuration of M on w is $\diamond q_{0} w$

The "next" configuration

- Let $u q v$ be any configuration of M such that $u v$ begins with \diamond
- We define NEXT(uqv) as follows:
- Break $u q v$ into individual symbols: $u q v=u_{1} u_{2} \ldots u_{n-1} u_{n} q v_{1} v_{2} v_{3} \ldots v_{m}$
- Let b be the symbol that M is "currently observing"
- $b=v_{1}$, unless $m=0$, in which case $b=\sqcup$
- If $\delta(q, b)=\left(q^{\prime}, b^{\prime}, \mathrm{R}\right)$, then $\operatorname{NEXT}(u q v)=u_{1} u_{2} \ldots u_{n-1} u_{n} b^{\prime} q^{\prime} v_{2} v_{3} \ldots v_{m}$
- If $\delta(q, b)=\left(q^{\prime}, b^{\prime}, \mathrm{L}\right)$, then $\operatorname{NEXT}(u q v)=u_{1} u_{2} \ldots u_{n-1} q^{\prime} u_{n} b^{\prime} v_{2} v_{3} \ldots v_{m}$
- This is well-defined $(u \neq \epsilon)$, because M must move right if $b=\diamond$

Halting configurations

- An accepting configuration is a configuration of the form $u q_{\text {accept }} v$
- A rejecting configuration is a configuration of the form $u q_{\text {reject }} v$
- A halting configuration is an accepting or rejecting configuration

Computation history

- Let $w \in \Sigma^{*}$ be an input
- Let C_{0} be the initial configuration of M on w, i.e., $C_{0}=\diamond q_{0} w$
- Inductively, for each $i \in \mathbb{N}$, let $C_{i+1}=\operatorname{NEXT}\left(C_{i}\right)$
- The computation history of M on w is the sequence $C_{0}, C_{1}, \ldots, C_{T}$, where C_{T} is the first halting configuration in the sequence
- If there is no such C_{T}, then the computation history is $C_{0}, C_{1}, C_{2}, \ldots$ (infinite)

Accepting, rejecting, and looping

- If the computation history of M on w ends with an accepting configuration, then we say that M accepts w
- If the computation history of M on w ends with a rejecting configuration, then we say that M rejects w
- In either of those cases, we say that M halts on w. If the computation history of M on w is infinite, then we say that M loops on w

Time

- Suppose the computation history of M on w is $C_{0}, C_{1}, \ldots, C_{T}$
- We say that T is the running time of M on w
- If M loops on w, then its running time on w is ∞
- We say that M halts on w within T steps if the running time of M on w is at most T

Space

- Let C_{0}, C_{1}, \ldots be the (finite o

Which of the following statements is false?

A: Space used \leq running time +2
B: If M halts on w within $|w|$ steps, then M halts on $w w$

C: If M halts on w, then M uses a
D: If M uses a finite amount of finite amount of space on w space on w, then M halts on w

Respond at PollEv.com/whoza or text "whoza" to 22333

- Write $C_{i}=\left(u_{i}, q_{i}, v_{i}\right)$ where $u_{i} \in \Gamma^{*}, q_{i} \in Q, v_{i} \in \Gamma^{*}$
- The space used by M on w is $\max _{i}\left|u_{i}\right|+1$, i.e., it's the maximum S such that during the computation of M on w, the head visits cell S
- (Can be ∞)

