CMSC 28100

Introduction to Complexity Theory

Spring 2024 Instructor: William Hoza

Problem set 1

- Problem set 1 is available in Canvas
- If you aren't officially enrolled in the course, send me an email. I'll add you to Canvas so you can access the homework
- Office hours (Thursday, Friday, Monday) are a good place to find study partners / homework collaborators

Which problems

can be solved

through computation?

Turing machines

- In each step, the machine decides
 - What to write
 - Which direction to move the head (left or right)
 - The new state
- The decision is based only on the current state and the observed symbol

Defining Turing machines rigorously

- **Def**: A Turing machine is a 9-tuple $M = (Q, \Sigma, \Gamma, \Diamond, \sqcup, \delta, q_0, q_{accept}, q_{reject})$ such that
 - *Q* is a finite set (the set of "states")
 - Σ and Γ are alphabets (the "input alphabet" and the "tape alphabet")
 - We have $\Sigma \cup \{\diamondsuit, \sqcup\} \subseteq \Gamma$ and $\sqcup, \diamondsuit \notin \Sigma$
 - δ is a function $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ (the "transition function")
 - If $\delta(q, \diamond) = (q', b', D)$, then $b' = \diamond$ and $D = \mathbb{R}$
 - If $\delta(q, b) = (q', b', D)$ and $b \neq \Diamond$, then $b' \neq \Diamond$
 - $q_0, q_{\text{accept}}, q_{\text{reject}} \in Q$ and $q_{\text{accept}} \neq q_{\text{reject}}$.

Warning: The definition in the textbook is slightly different. Sorry! (The two models are equivalent.)

- The label " $b \rightarrow D$ " is shorthand for " $b \rightarrow b, D$ "
- An arc labeled " $a, b \rightarrow \cdots$ " represents two arcs (" $a \rightarrow \cdots$ " and " $b \rightarrow \cdots$ ")

Defining TM computation rigorously

- The transition function δ describes the local evolution of the computation
- Now let's precisely describe the global evolution of the computation

Configurations of a Turing machine

- Let $M = (Q, \Sigma, \Gamma, \Diamond, \sqcup, \delta, q_0, q_{accept}, q_{reject})$ be a Turing machine
- A configuration of *M* is a triple (u, q, v) where $u \in \Gamma^*$, $q \in Q$, and $v \in \Gamma^*$. Interpretation:
 - The tape currently contains $uv \sqcup \sqcup \sqcup \sqcup \sqcup$
 - The machine is currently in state q and the head is currently located in cell |u| + 1

Configuration shorthand

- Instead of (u, q, v), we often write uqv
- We think of uqv as a string over the alphabet $\Gamma \cup Q$
- This shorthand can only be used if $Q \cap \Gamma = \emptyset$, which we can assume without loss of generality by renaming states if necessary

Equivalent configurations

- Note: uqv and $uqv \sqcup$ are technically two distinct configurations...
- However, they represent the exact same scenario
- We can say that they are "equivalent"
- (A configuration is a finite string, even though the tape is infinitely long)

The initial configuration

- Let $w \in \Sigma^*$ be an input
- The initial configuration of M on w is $\Diamond q_0 w$

The "next" configuration

- Let uqv be any configuration of M such that uv begins with \Diamond
- We define NEXT(uqv) as follows:
 - Break uqv into individual symbols: $uqv = u_1u_2 \dots u_{n-1}u_nqv_1v_2v_3 \dots v_m$
 - Let b be the symbol that M is "currently observing"
 - $b = v_1$, unless m = 0, in which case $b = \sqcup$
 - If $\delta(q, b) = (q', b', \mathbb{R})$, then $\text{NEXT}(uqv) = u_1u_2 \dots u_{n-1}u_n b'q'v_2v_3 \dots v_m$
 - If $\delta(q, b) = (q', b', L)$, then NEXT $(uqv) = u_1u_2 \dots u_{n-1}q'u_nb'v_2v_3 \dots v_m$
 - This is well-defined ($u \neq \epsilon$), because M must move right if $b = \Diamond$

Halting configurations

- An accepting configuration is a configuration of the form $uq_{accept}v$
- A rejecting configuration is a configuration of the form $uq_{reject}v$
- A halting configuration is an accepting or rejecting configuration

Computation history

- Let $w \in \Sigma^*$ be an input
- Let C_0 be the initial configuration of M on w, i.e., $C_0 = \Diamond q_0 w$
- Inductively, for each $i \in \mathbb{N}$, let $C_{i+1} = \text{NEXT}(C_i)$
- The computation history of M on w is the sequence C_0, C_1, \dots, C_T , where C_T is the first halting configuration in the sequence
- If there is no such C_T , then the computation history is $C_0, C_1, C_2, ...$ (infinite)

Accepting, rejecting, and looping

- If the computation history of *M* on *w* ends with an accepting configuration, then we say that *M* accepts *w*
- If the computation history of *M* on *w* ends with a rejecting configuration, then we say that *M* rejects *w*
- In either of those cases, we say that *M* halts on *w*. If the computation history of *M* on *w* is infinite, then we say that *M* loops on *w*

- Suppose the computation history of M on w is C_0, C_1, \dots, C_T
- We say that T is the running time of M on w
- If M loops on w, then its running time on w is ∞
- We say that *M* halts on *w* within *T* steps if the running time of *M* on *w* is at most *T*

- The space used by M on w is $\max_{i} |u_i| + 1$, i.e., it's the maximum S such that during the computation of M on w, the head visits cell S
- (Can be ∞)