
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Problem set 1

• Problem set 1 is available in Canvas

• If you aren’t officially enrolled in the course, send me an email. I’ll

add you to Canvas so you can access the homework

• Office hours (Thursday, Friday, Monday) are a good place to find

study partners / homework collaborators

2

Which problems

can be solved

through computation?

3

Turing machines

4

• In each step, the machine decides

• What to write

• Which direction to move the head (left or right)

• The new state

• The decision is based only on the current state and the observed

symbol

Defining Turing machines rigorously

• Def: A Turing machine is a 9-tuple 𝑀 = (𝑄, Σ, Γ, ♢,⊔, 𝛿, 𝑞0, 𝑞accept, 𝑞reject) such that

• 𝑄 is a finite set (the set of “states”)

• Σ and Γ are alphabets (the “input alphabet” and the “tape alphabet”)

• We have Σ ∪ {♢,⊔} ⊆ Γ and ⊔, ♢ ∉ Σ

• 𝛿 is a function 𝛿: 𝑄 × Γ → 𝑄 × Γ × {L, R} (the “transition function”)

• If 𝛿 𝑞, ♢ = (𝑞′, 𝑏′, 𝐷), then 𝑏′ = ♢ and 𝐷 = R

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, 𝐷 and 𝑏 ≠ ♢, then 𝑏′ ≠ ♢

• 𝑞0, 𝑞accept, 𝑞reject ∈ 𝑄 and 𝑞accept ≠ 𝑞reject.

5

Warning: The definition

in the textbook is slightly

different. Sorry! (The two

models are equivalent.)

State diagram

• Each node represents a state

• An arc from 𝑞 to 𝑞′

labeled “𝑏 → 𝑏′, 𝐷”

means 𝛿 𝑞, 𝑏 = (𝑞′, 𝑏, 𝐷)

• The label “𝑏 → 𝐷” is shorthand for “𝑏 → 𝑏, 𝐷”

• An arc labeled “𝑎, 𝑏 → ⋯” represents two arcs (“𝑎 → ⋯” and “𝑏 → ⋯”)

6

𝑞0

𝑟0

𝑟1

ℓ0

ℓ1

ℓ 𝑞reject

𝑞accept

⊔ → L

⊔ → L

0,1 → R

0,1 → R

0,1 → L
⊔ → R

Defining TM computation rigorously

• The transition function 𝛿 describes the local evolution of the

computation

• Now let’s precisely describe the global evolution of the computation

7

Configurations of a Turing machine

• Let 𝑀 = (𝑄, Σ, Γ, ♢,⊔, 𝛿, 𝑞0, 𝑞accept, 𝑞reject) be a Turing machine

• A configuration of 𝑀 is a triple (𝑢, 𝑞, 𝑣) where 𝑢 ∈ Γ∗, 𝑞 ∈ 𝑄, and 𝑣 ∈ Γ∗.

Interpretation:

• The tape currently contains 𝑢𝑣 ⊔⊔⊔⊔ ⋯

• The machine is currently in state 𝑞 and the head is currently located in cell 𝑢 + 1

8

𝑢2 𝑢3𝑢1 ⋯ 𝑢𝑛 𝑣1 𝑣2 ⋯ 𝑣𝑚 ⊔ ⊔

𝑞

⊔

Configuration shorthand

• Instead of 𝑢, 𝑞, 𝑣 , we often write 𝑢𝑞𝑣

• We think of 𝑢𝑞𝑣 as a string over the alphabet Γ ∪ 𝑄

• This shorthand can only be used if 𝑄 ∩ Γ = ∅, which we can assume

without loss of generality by renaming states if necessary

9

Equivalent configurations

• Note: 𝑢𝑞𝑣 and 𝑢𝑞𝑣 ⊔ are technically two distinct configurations…

• However, they represent the exact same scenario

• We can say that they are “equivalent”

• (A configuration is a finite string, even though the tape is infinitely long)

10

The initial configuration

• Let 𝑤 ∈ Σ∗ be an input

• The initial configuration of 𝑀 on 𝑤 is ♢𝑞0𝑤

11

The “next” configuration

• Let 𝑢𝑞𝑣 be any configuration of 𝑀 such that 𝑢𝑣 begins with ♢

• We define NEXT 𝑢𝑞𝑣 as follows:

• Break 𝑢𝑞𝑣 into individual symbols: 𝑢𝑞𝑣 = 𝑢1𝑢2 … 𝑢𝑛−1𝑢𝑛𝑞𝑣1𝑣2𝑣3 … 𝑣𝑚

• Let 𝑏 be the symbol that 𝑀 is “currently observing”

• 𝑏 = 𝑣1, unless 𝑚 = 0, in which case 𝑏 = ⊔

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, R , then NEXT 𝑢𝑞𝑣 = 𝑢1𝑢2 … 𝑢𝑛−1𝑢𝑛𝑏′𝑞′𝑣2𝑣3 … 𝑣𝑚

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, L , then NEXT 𝑢𝑞𝑣 = 𝑢1𝑢2 … 𝑢𝑛−1𝑞′𝑢𝑛𝑏′𝑣2𝑣3 … 𝑣𝑚

• This is well-defined (𝑢 ≠ 𝜖), because 𝑀 must move right if 𝑏 = ♢

12

Halting configurations

• An accepting configuration is a configuration of the form 𝑢𝑞accept𝑣

• A rejecting configuration is a configuration of the form 𝑢𝑞reject𝑣

• A halting configuration is an accepting or rejecting configuration

13

Computation history

• Let 𝑤 ∈ Σ∗ be an input

• Let 𝐶0 be the initial configuration of 𝑀 on 𝑤, i.e., 𝐶0 = ♢𝑞0𝑤

• Inductively, for each 𝑖 ∈ ℕ, let 𝐶𝑖+1 = NEXT 𝐶𝑖

• The computation history of 𝑀 on 𝑤 is the sequence 𝐶0, 𝐶1, … , 𝐶𝑇, where 𝐶𝑇

is the first halting configuration in the sequence

• If there is no such 𝐶𝑇, then the computation history is 𝐶0, 𝐶1, 𝐶2, … (infinite)

14

Accepting, rejecting, and looping

• If the computation history of 𝑀 on 𝑤 ends with an accepting

configuration, then we say that 𝑀 accepts 𝑤

• If the computation history of 𝑀 on 𝑤 ends with a rejecting configuration,

then we say that 𝑀 rejects 𝑤

• In either of those cases, we say that 𝑀 halts on 𝑤. If the computation

history of 𝑀 on 𝑤 is infinite, then we say that 𝑀 loops on 𝑤

15

Time

• Suppose the computation history of 𝑀 on 𝑤 is 𝐶0, 𝐶1, … , 𝐶𝑇

• We say that 𝑇 is the running time of 𝑀 on 𝑤

• If 𝑀 loops on 𝑤, then its running time on 𝑤 is ∞

• We say that 𝑀 halts on 𝑤 within 𝑇 steps if the running time of 𝑀

on 𝑤 is at most 𝑇

16

Space

• Let 𝐶0, 𝐶1, … be the (finite or infinite) computation history of 𝑀 on 𝑤

• Write 𝐶𝑖 = 𝑢𝑖 , 𝑞𝑖 , 𝑣𝑖 where 𝑢𝑖 ∈ Γ∗, 𝑞𝑖 ∈ 𝑄, 𝑣𝑖 ∈ Γ∗

• The space used by 𝑀 on 𝑤 is max
𝑖

𝑢𝑖 + 1, i.e., it’s the maximum 𝑆 such

that during the computation of 𝑀 on 𝑤, the head visits cell 𝑆

• (Can be ∞)

17

Which of the following statements is false?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: If 𝑀 halts on 𝑤, then 𝑀 uses a
finite amount of space on 𝑤

A: Space used ≤ running time + 2
B: If 𝑀 halts on 𝑤 within |𝑤| steps,
then 𝑀 halts on 𝑤𝑤

D: If 𝑀 uses a finite amount of
space on 𝑤, then 𝑀 halts on 𝑤

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Problem set 1
	Slide 3: Which problems can be solved through computation?
	Slide 4: Turing machines
	Slide 5: Defining Turing machines rigorously
	Slide 6: State diagram
	Slide 7: Defining TM computation rigorously
	Slide 8: Configurations of a Turing machine
	Slide 9: Configuration shorthand
	Slide 10: Equivalent configurations
	Slide 11: The initial configuration
	Slide 12: The “next” configuration
	Slide 13: Halting configurations
	Slide 14: Computation history
	Slide 15: Accepting, rejecting, and looping
	Slide 16: Time
	Slide 17: Space

