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CMSC 28100

Introduction to 
Complexity Theory

Spring 2024
Instructor: William Hoza



Problem set 1

• Problem set 1 is available in Canvas

• If you aren’t officially enrolled in the course, send me an email. I’ll 

add you to Canvas so you can access the homework

• Office hours (Thursday, Friday, Monday) are a good place to find 

study partners / homework collaborators
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Which problems

can be solved

through computation?
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Turing machines
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• In each step, the machine decides

• What to write

• Which direction to move the head (left or right)

• The new state

• The decision is based only on the current state and the observed 

symbol



Defining Turing machines rigorously

• Def: A Turing machine is a 9-tuple 𝑀 = (𝑄, Σ, Γ, ♢,⊔, 𝛿, 𝑞0, 𝑞accept, 𝑞reject) such that

• 𝑄 is a finite set (the set of “states”)

• Σ and Γ are alphabets (the “input alphabet” and the “tape alphabet”)

• We have Σ ∪ {♢,⊔} ⊆ Γ and ⊔, ♢ ∉ Σ

• 𝛿 is a function 𝛿: 𝑄 × Γ → 𝑄 × Γ × {L, R} (the “transition function”)

• If 𝛿 𝑞, ♢ = (𝑞′, 𝑏′, 𝐷), then 𝑏′ = ♢ and 𝐷 = R

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, 𝐷 and 𝑏 ≠ ♢, then 𝑏′ ≠ ♢

• 𝑞0, 𝑞accept, 𝑞reject ∈ 𝑄 and 𝑞accept ≠ 𝑞reject.
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Warning: The definition 

in the textbook is slightly 

different. Sorry! (The two 

models are equivalent.)



State diagram

• Each node represents a state

• An arc from 𝑞 to 𝑞′

labeled “𝑏 → 𝑏′, 𝐷”

means 𝛿 𝑞, 𝑏 = (𝑞′, 𝑏, 𝐷)

• The label “𝑏 → 𝐷” is shorthand for “𝑏 → 𝑏, 𝐷”

• An arc labeled “𝑎, 𝑏 → ⋯” represents two arcs (“𝑎 → ⋯” and “𝑏 → ⋯”)
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Defining TM computation rigorously

• The transition function 𝛿 describes the local evolution of the 

computation

• Now let’s precisely describe the global evolution of the computation
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Configurations of a Turing machine

• Let 𝑀 = (𝑄, Σ, Γ, ♢,⊔, 𝛿, 𝑞0, 𝑞accept, 𝑞reject) be a Turing machine

• A configuration of 𝑀 is a triple (𝑢, 𝑞, 𝑣) where 𝑢 ∈ Γ∗, 𝑞 ∈ 𝑄, and 𝑣 ∈ Γ∗. 

Interpretation:

• The tape currently contains 𝑢𝑣 ⊔⊔⊔⊔ ⋯

• The machine is currently in state 𝑞 and the head is currently located in cell 𝑢 + 1
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Configuration shorthand

• Instead of 𝑢, 𝑞, 𝑣 , we often write 𝑢𝑞𝑣

• We think of 𝑢𝑞𝑣 as a string over the alphabet Γ ∪ 𝑄

• This shorthand can only be used if 𝑄 ∩ Γ = ∅, which we can assume 

without loss of generality by renaming states if necessary
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Equivalent configurations

• Note: 𝑢𝑞𝑣 and 𝑢𝑞𝑣 ⊔ are technically two distinct configurations…

• However, they represent the exact same scenario

• We can say that they are “equivalent”

• (A configuration is a finite string, even though the tape is infinitely long)
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The initial configuration

• Let 𝑤 ∈ Σ∗ be an input

• The initial configuration of 𝑀 on 𝑤 is ♢𝑞0𝑤
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The “next” configuration

• Let 𝑢𝑞𝑣 be any configuration of 𝑀 such that 𝑢𝑣 begins with ♢

• We define NEXT 𝑢𝑞𝑣 as follows:

• Break 𝑢𝑞𝑣 into individual symbols: 𝑢𝑞𝑣 = 𝑢1𝑢2 … 𝑢𝑛−1𝑢𝑛𝑞𝑣1𝑣2𝑣3 … 𝑣𝑚

• Let 𝑏 be the symbol that 𝑀 is “currently observing”

• 𝑏 = 𝑣1, unless 𝑚 = 0, in which case 𝑏 = ⊔

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, R , then NEXT 𝑢𝑞𝑣 = 𝑢1𝑢2 … 𝑢𝑛−1𝑢𝑛𝑏′𝑞′𝑣2𝑣3 … 𝑣𝑚

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, L , then NEXT 𝑢𝑞𝑣 = 𝑢1𝑢2 … 𝑢𝑛−1𝑞′𝑢𝑛𝑏′𝑣2𝑣3 … 𝑣𝑚

• This is well-defined (𝑢 ≠ 𝜖), because 𝑀 must move right if 𝑏 = ♢
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Halting configurations

• An accepting configuration is a configuration of the form 𝑢𝑞accept𝑣

• A rejecting configuration is a configuration of the form 𝑢𝑞reject𝑣

• A halting configuration is an accepting or rejecting configuration
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Computation history

• Let 𝑤 ∈ Σ∗ be an input

• Let 𝐶0 be the initial configuration of 𝑀 on 𝑤, i.e., 𝐶0 = ♢𝑞0𝑤

• Inductively, for each 𝑖 ∈ ℕ, let 𝐶𝑖+1 = NEXT 𝐶𝑖

• The computation history of 𝑀 on 𝑤 is the sequence 𝐶0, 𝐶1, … , 𝐶𝑇, where 𝐶𝑇

is the first halting configuration in the sequence

• If there is no such 𝐶𝑇, then the computation history is 𝐶0, 𝐶1, 𝐶2, … (infinite)
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Accepting, rejecting, and looping

• If the computation history of 𝑀 on 𝑤 ends with an accepting 

configuration, then we say that 𝑀 accepts 𝑤

• If the computation history of 𝑀 on 𝑤 ends with a rejecting configuration, 

then we say that 𝑀 rejects 𝑤

• In either of those cases, we say that 𝑀 halts on 𝑤. If the computation 

history of 𝑀 on 𝑤 is infinite, then we say that 𝑀 loops on 𝑤
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Time

• Suppose the computation history of 𝑀 on 𝑤 is 𝐶0, 𝐶1, … , 𝐶𝑇

• We say that 𝑇 is the running time of 𝑀 on 𝑤

• If 𝑀 loops on 𝑤, then its running time on 𝑤 is ∞

• We say that 𝑀 halts on 𝑤 within 𝑇 steps if the running time of 𝑀

on 𝑤 is at most 𝑇

16



Space

• Let 𝐶0, 𝐶1, … be the (finite or infinite) computation history of 𝑀 on 𝑤

• Write 𝐶𝑖 = 𝑢𝑖 , 𝑞𝑖 , 𝑣𝑖 where 𝑢𝑖 ∈ Γ∗, 𝑞𝑖 ∈ 𝑄, 𝑣𝑖 ∈ Γ∗

• The space used by 𝑀 on 𝑤 is max
𝑖

𝑢𝑖 + 1, i.e., it’s the maximum 𝑆 such 

that during the computation of 𝑀 on 𝑤, the head visits cell 𝑆

• (Can be ∞)
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Which of the following statements is false?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: If 𝑀 halts on 𝑤, then 𝑀 uses a
finite amount of space on 𝑤

A: Space used ≤ running time + 2
B: If 𝑀 halts on 𝑤 within |𝑤| steps,
then 𝑀 halts on 𝑤𝑤

D: If 𝑀 uses a finite amount of
space on 𝑤, then 𝑀 halts on 𝑤
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