
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

EXP-hardness

• Definition: Let 𝐿 be a language. Suppose that for every 𝐿′ ∈ EXP,

there is a poly-time mapping reduction from 𝐿′ to 𝐿. In this case, we

say that 𝐿 is EXP-hard

• “𝐿 is EXP-hard” means “𝐿 is at least as hard as any language in EXP”

2

EXP-completeness

• Definition: Let 𝐿 be a language. We say that 𝐿 is EXP-complete if

𝐿 is EXP-hard and 𝐿 ∈ EXP

• The EXP-complete languages are the hardest languages in EXP

• If 𝐿 is EXP-complete, then the language 𝐿 can be said to

“capture” / “express” the entire complexity class EXP

3

EXP-completeness

4

P

EXP

EXP-complete

EXP-hard

EXP-complete languages are not in P

• Claim: If 𝐿 is EXP-complete, then 𝐿 ∉ P

• Proof: Since P ≠ EXP, there exists 𝐿HARD ∈ EXP ∖ P

• Since 𝐿 is EXP-hard, there is a poly-time mapping reduction from

𝐿HARD to 𝐿

• Since 𝐿HARD ∉ P, this implies 𝐿 ∉ P

5

BOUNDED-HALT is EXP-complete

• Let BOUNDED-HALT = 𝑀, 𝑤, 𝑇 ∶ 𝑀 halts on 𝑤 within 𝑇 steps

• Claim: BOUNDED-HALT is EXP-complete

• Proof: First, let’s show that BOUNDED-HALT ∈ EXP

• Algorithm: Given ⟨𝑀, 𝑤, 𝑇⟩, we simulate 𝑀 on 𝑤 for 𝑇 steps

• Exercise: This algorithm has time complexity

𝑂 𝑀 ⋅ 𝑇2 = 𝑂 𝑛 ⋅ 2𝑛 2 = 2𝑂 𝑛

6

BOUNDED-HALT is EXP-complete

• Next, we need to show that BOUNDED-HALT is EXP-hard

• Fix any 𝐿 ∈ EXP. Let 𝑀𝐿 be a TM that decides 𝐿 in time 𝐶 ⋅ 2𝑛𝑘

• Reduction from 𝐿 to BOUNDED-HALT: 𝑓 𝑤 = 𝑀𝐿
′ , 𝑤, 𝐶 ⋅ 2𝑛𝑘

, where 𝑀𝐿
′

is a modified version of 𝑀𝐿 in which 𝑞reject has been replaced with looping

• Poly-time computable YES maps to YES NO maps to NO

7

EXP-completeness

8

P

EXP

EXP-complete

EXP-hard

BOUNDED-HALT

EXP-completeness

• EXP-completeness is a valuable technique for

identifying languages outside P

• If 𝐿 is EXP-complete, then 𝐿 ∉ P

• There are many interesting EXP-complete languages

9

An EXP-complete problem that isn’t about TMs

• Let GENERALIZED-CHESS = { 𝑃 ∶ 𝑃 is an arrangement of chess

pieces on an 𝑁 × 𝑁 board from which "white" can force a win}

• (Exercise: Precisely define GENERALIZED-CHESS)

• (Proof omitted. This theorem will not be on psets/exams)

10

Theorem: GENERALIZED-CHESS is EXP-complete.

Consequently, GENERALIZED-CHESS ∉ P.

EXP-completeness

• EXP-completeness is a valuable tool for identifying intractability

• Is EXP-completeness the only tool we need for identifying intractability?

11

The clique problem

• A 𝑘-clique in a graph 𝐺 = 𝑉, 𝐸 is a set 𝑆 ⊆ 𝑉 such that 𝑆 = 𝑘 and

every two vertices in 𝑆 are connected by an edge

• Example: This graph has a 4-clique

12

Which of the following statements is false?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: If 𝐺 has fewer than 𝑘
2

 edges,

then 𝐺 does not have a 𝑘-clique

A: Every vertex in a 𝑘-clique has
degree at least 𝑘 − 1

B: A single graph might have
many 𝑘-cliques

D: If every vertex has degree at
least 𝑘 − 1, then 𝐺 has a 𝑘-clique

The clique problem

• Let CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• Example: Let 𝐺 be the graph with the following adjacency matrix

• Does 𝐺 have a 4-clique?

13

a b c d e f g

a 0 1 1 0 0 1 0

b 1 0 0 1 1 0 1

c 1 0 0 0 1 0 1

d 0 1 0 0 1 0 1

e 0 1 1 1 0 1 1

f 1 0 0 0 1 0 1

g 0 1 1 1 1 1 0

The clique problem

• Let CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• Example: Let 𝐺 be the graph with the following adjacency matrix

• Does 𝐺 have a 4-clique?

• Yes! 𝑆 = {b, d, e, g}

14

a b c d e f g

a 0 1 1 0 0 1 0

b 1 0 0 1 1 0 1

c 1 0 0 0 1 0 1

d 0 1 0 0 1 0 1

e 0 1 1 1 0 1 1

f 1 0 0 0 1 0 1

g 0 1 1 1 1 1 0

Complexity of the clique problem

• Let CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• CLIQUE ∈ EXP. (Why?)

• If you spend a while trying to design a good algorithm, eventually you might

start to suspect that CLIQUE ∉ P

• However, if you spend a while trying to design a good reduction, eventually

you might start to suspect that CLIQUE is not EXP-complete either!

15

16

P

EXP

EXP-complete

EXP-hard

CLIQUE seems
to be here

Complexity of the clique problem

• Evidently, to understand the complexity of CLIQUE, we need

new conceptual tools

17

Guessing and checking

• Key insight: There exists a polynomial-time randomized Turing machine

𝑀 with the following properties.

• If 𝐺, 𝑘 ∉ CLIQUE, then Pr 𝑀 accepts 𝐺, 𝑘 = 0.

• If 𝐺, 𝑘 ∈ CLIQUE, then Pr 𝑀 accepts 𝐺, 𝑘 ≠ 0.

• Proof: 𝑀 picks a random subset of the vertices, accepts if it is a 𝑘-clique,

and rejects otherwise.

18

“Nondeterministic TM”

The complexity class NP

• Let 𝐿 ⊆ Σ∗ be a language

• Definition: 𝐿 ∈ NP if there exists a randomized polynomial-time

Turing machine 𝑀 such that for every 𝑤 ∈ Σ∗:

• If 𝑤 ∈ 𝐿, then Pr 𝑀 accepts 𝑤 ≠ 0

• If 𝑤 ∉ 𝐿, then Pr 𝑀 accepts 𝑤 = 0

• “Nondeterministic Polynomial-time”

19

Another example of a language in NP

• Let FACTOR = 𝑁, 𝐾 ∶ 𝑁 has a prime factor 𝑝 ≤ 𝐾

• Claim: FACTOR ∈ NP

• Proof:

1. Pick 𝑀 ∈ 2, 3, 4, … , 𝐾 uniformly at random

2. Check whether 𝑁 is a multiple of 𝑀 by long division

3. If it is, accept; if it isn’t, reject

20

How to interpret NP

• NP is not intended to model the concept of tractability

• A nondeterministic polynomial-time algorithm is not a practical way

to solve a problem

• Instead, NP is a conceptual tool for reasoning about computation

21

“Verification of certificates” perspective

• Let 𝐿 ⊆ Σ∗ be a language

• Claim: 𝐿 ∈ NP if and only if there exists 𝑘 ∈ ℕ and 𝑅 ∈ P such that

• For every 𝑤 ∈ 𝐿, there exists 𝑥 such that 𝑥 ≤ 𝑤 𝑘 and 𝑤, 𝑥 ∈ 𝑅

• For every 𝑤 ∉ 𝐿, for every 𝑥, we have 𝑤, 𝑥 ∉ 𝑅

• Proof: (⇒) Let 𝑅 = 𝑤, 𝑥 ∶ 𝑀 accepts 𝑤 when 𝑥 is on tape 2

• (⇐) Pick 𝑥 at random. Accept if 𝑤, 𝑥 ∈ 𝑅 and reject otherwise

22

Terminology:

• A poly-time TM that decides 𝑅 is called a verifier for 𝐿

• If 𝑤, 𝑥 ∈ 𝑅, then 𝑥 is called a certificate/witness for 𝑤

The P vs. NP problem

• P ⊆ NP (why?)

• Does P = NP?

• “P = NP” would mean that finding a solution is never significantly harder

than verifying someone else’s solution

• This would be counterintuitive!

23

Conjecture: P ≠ NP

P

NP

The P vs. NP problem

• Nobody knows how to prove that P ≠ NP

• The question of whether P = NP is one of the most important open

questions in theoretical computer science and mathematics

• The Clay Mathematics Institute will give you $1 million if you prove

P ≠ NP (or if you prove P = NP)

24

Solving problems in NP by brute force

• Claim: NP ⊆ PSPACE

• Proof: Let 𝑀 be a nondeterministic TM that runs in time 𝑛𝑘. Given 𝑤 ∈ Σ𝑛:

1. For every 𝑥 ∈ 0, 1 𝑛𝑘
, simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑥 on tape 2

2. If we find some 𝑥 such that 𝑀 accepts, accept. Otherwise, reject

• NP can be informally defined as “the set of problems that can be solved by

brute-force search”

25

26

P

PSPACE

EXP

NP

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: EXP-hardness
	Slide 3: EXP-completeness
	Slide 4: EXP-completeness
	Slide 5: EXP-complete languages are not in P
	Slide 6: BOUNDED‑HALT is EXP-complete
	Slide 7: BOUNDED‑HALT is EXP-complete
	Slide 8: EXP-completeness
	Slide 9: EXP-completeness
	Slide 10: An EXP-complete problem that isn’t about TMs
	Slide 11: EXP-completeness
	Slide 12: The clique problem
	Slide 13: The clique problem
	Slide 14: The clique problem
	Slide 15: Complexity of the clique problem
	Slide 16
	Slide 17: Complexity of the clique problem
	Slide 18: Guessing and checking
	Slide 19: The complexity class NP
	Slide 20: Another example of a language in NP
	Slide 21: How to interpret NP
	Slide 22: “Verification of certificates” perspective
	Slide 23: The P vs. NP problem
	Slide 24: The P vs. NP problem
	Slide 25: Solving problems in NP by brute force
	Slide 26

