CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

EXP-hardness

* Definition: Let L be a language. Suppose that for every L' € EXP,
there is a poly-time mapping reduction from L’ to L. In this case, we

say that L is EXP-hard

* “L is EXP-hard” means “L is at least as hard as any language in EXP”

EXP-completeness

* Definition: Let L be a language. We say that L is EXP-complete if
L is EXP-hard and L € EXP

 The EXP-complete languages are the hardest languages in EXP

* If L is EXP-complete, then the language L can be said to

“capture” / “express” the entire complexity class EXP

EXP-completeness

EXP-hard

EXP-complete

EXP-complete languages are not in P

* Claim: If L is EXP-complete, then L & P
* Proof: Since P # EXP, there exists Lyarp € EXP \ P

 Since L is EXP-hard, there is a poly-time mapping reduction from

LHARD to L

* Since Lyarp & P, thisimplies L € P

BOUNDED-HALT is EXP-complete

* Let BOUNDED-HALT = {(M,w, T) : M halts on w within T steps}
* Claim: BOUNDED-HALT is EXP-complete

* Proof: First, let’s show that BOUNDED-HALT € EXP

* Algorithm: Given (M, w, T), we simulate M on w for T steps

* Exercise: This algorithm has time complexity

O({M)] - T?) = 0(n - (2™)?2) = 20(")

BOUNDED-HALT is EXP-complete

* Next, we need to show that BOUNDED-HALT is EXP-hard

* Fixany L € EXP. Let M; be a TM that decides L in time C - o

* Reduction from L to BOUNDED-HALT: f(w) = <M£, w,C - 2"k>, where M,

is a modified version of M} in which qyeject has been replaced with looping

* Poly-time computable &/ YES maps to YES &/ NO maps to NO «/

EXP-completeness

EXP-hard

BOUNDED-HALT

DAY
EXP-complete

\\\“\\\\\\lmmmm o
—JW

rﬁ-\:l

(ILLAAREE ‘“

EXP-completeness

 EXP-completeness is a valuable technique for

identifying languages outside P
* If L is EXP-complete, then L & P

* There are many interesting EXP-complete languages

R L CELARRR

i W'F!nf
nmlm“ by

..... mmlf'fl ”’””
i
1] I |

An EXP-complete problem that isn’t about TMs

 Let GENERALIZED-CHESS = {{P) : P is an arrangement of chess

pieces on an N X N board from which "white" can force a win}

* (Exercise: Precisely define GENERALIZED-CHESS)

Theorem: GENERALIZED-CHESS is EXP-complete.
Consequently, GENERALIZED-CHESS & P.

* (Proof omitted. This theorem will not be on psets/exams)

10

EXP-completeness

 EXP-completeness is a valuable tool for identifying intractability

* |s EXP-completeness the only tool we need for identifying intractability?

11

The cligue problem

* A k-cligueinagraph G = (V,E) isasetS € V such that |S| = k and

every two vertices in S are connected by an edge

* Example: This graph has a 4-clique

<

Which of the following statements is false? >

<

A: Every vertex in a k-clique has B: A single graph might have
degree atleast k — 1 many k-cliques

<

C: If G has fewer than (’2‘) edges, D: If every vertex has degree at
then G does not have a k-clique least k — 1, then G has a k-clique

Respond at PollEv.com/whoza or text “whoza” to 22333

12

The cligue problem

* Let CLIQUE = {{G, k) : G has a k-clique}

* Example: Let G be the graph with the following adjacency matrix

* Does G have a 4-clique? a b cde f g
al0|1]1({0|0]1|6O0
b|1|0|0|1|1|0]|1
c|1{010|]0]1(0]1
d|of(1(0(0|1]|0]1
e|O|1(1|1]0]1]1
fl1(0|0|0|1|0]|1
g/O(1|1(1(1|1/|60

13

The cligue problem

* Let CLIQUE = {{G, k) : G has a k-clique}

* Example: Let G be the graph with the following adjacency matrix

* Does G have a 4-clique? a JON < NORNER T JE
al0|1]1({0|0]1|6O0
*Yes! S = {b,d, e, g} bj1/0j0J1]1]0]1
c|1{010|]0]1(0]1
d| o(1|0(0f1(0f1
e|O|1(1|1|0|1/|1
fl1(0|0|0|1|0]|1
g|(O0O(1|1(1(1]1/|60

14

Complexity of the clique problem

* Let CLIQUE = {(G, k) : G has a k-clique}
 CLIQUE € EXP. (Why?)

* If you spend a while trying to design a good algorithm, eventually you might

start to suspect that CLIQUE & P

* However, if you spend a while trying to design a good reduction, eventually

you might start to suspect that CLIQUE is not EXP-complete either!

15

CLIQUE seems

to be here

EXP-hard

EXP-complete

16

Complexity of the clique problem

* Evidently, to understand the complexity of CLIQUE, we need

new conceptual tools

17

Guessing and checking

* Key insight: There exists a polynomial-time randomized Turing machine
M with the following properties.

* If (G, k) ¢ CLIQUE, then Pr[M accepts (G, k)] = 0.

> “Nondeterministic TM”

 If (G, k) € CLIQUE, then Pr|M accepts (G, k)] + 0.

4

* Proof: M picks a random subset of the vertices, accepts if it is a k-clique,

and rejects otherwise.

18

The complexity class NP

e Let L € X" be alanguage

* Definition: L € NP if there exists a randomized polynomial-time
Turing machine M such that for everyw € X7:

* If w € L, then Pr[M accepts w] # 0

* Ifw ¢ L, then Pr[M accepts w] = 0

* “Nondeterministic Polynomial-time”

19

Another example of a language in NP

* Let FACTOR = {{N, K) : N has a prime factor p < K}
* Claim: FACTOR € NP

* Proof:
1. Pick M € {2,3,4,..., K} uniformly at random
2. Check whether N is a multiple of M by long division

3. Ifitis, accept; if itisn’t, reject

20

How to interpret NP

* NP is not intended to model the concept of tractability

* A nondeterministic polynomial-time algorithm is not a practical way

to solve a problem

* Instead, NP is a conceptual tool for reasoning about computation

21

s

Terminology:

((. . .
Verificatiq - a poly-time TM that decides R is called a verifier for L

K. If (W, x) € R, then x is called a certificate/witness for w

e Let L € X" be alanguage

e Claim: L € NP if and only if there exists k € N and R € P such that

* For every w € L, there exists x such that |x| < |w|* and (w, x) € R

* Foreveryw & L, for every x, we have (w,x) € R
* Proof: (=) Let R = {{w, x) : M accepts w when x is on tape 2}

* (&) Pick x at random. Accept if (W, x) € R and reject otherwise

22

NP
The P vs. NP problem
e P € NP (why?)
e Does P = NP?

 “P = NP” would mean that finding a solution is never significantly harder
than verifying someone else’s solution

e This would be counterintuitive!

Conjecture: P = NP

23

The P vs. NP problem

* Nobody knows how to prove that P # NP

* The question of whether P = NP is one of the most important open

guestions in theoretical computer science and mathematics

* The Clay Mathematics Institute will give you S1 million if you prove

P + NP (or if you prove P = NP)

24

Solving problems in NP by brute force

* Claim: NP € PSPACE

 Proof: Let M be a nondeterministic TM that runs in time n*. Given w € I™:

1. Forevery x € {0, 1}"k, simulate M, initialized with w on tape 1 and x on tape 2

2. If we find some x such that M accepts, accept. Otherwise, reject

* NP can be informally defined as “the set of problems that can be solved by

brute-force search”

25

EXP

PSPACE

26

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: EXP-hardness
	Slide 3: EXP-completeness
	Slide 4: EXP-completeness
	Slide 5: EXP-complete languages are not in P
	Slide 6: BOUNDED‑HALT is EXP-complete
	Slide 7: BOUNDED‑HALT is EXP-complete
	Slide 8: EXP-completeness
	Slide 9: EXP-completeness
	Slide 10: An EXP-complete problem that isn’t about TMs
	Slide 11: EXP-completeness
	Slide 12: The clique problem
	Slide 13: The clique problem
	Slide 14: The clique problem
	Slide 15: Complexity of the clique problem
	Slide 16
	Slide 17: Complexity of the clique problem
	Slide 18: Guessing and checking
	Slide 19: The complexity class NP
	Slide 20: Another example of a language in NP
	Slide 21: How to interpret NP
	Slide 22: “Verification of certificates” perspective
	Slide 23: The P vs. NP problem
	Slide 24: The P vs. NP problem
	Slide 25: Solving problems in NP by brute force
	Slide 26

