CMSC 28100

Introduction to Complexity Theory

Spring 2024 Instructor: William Hoza

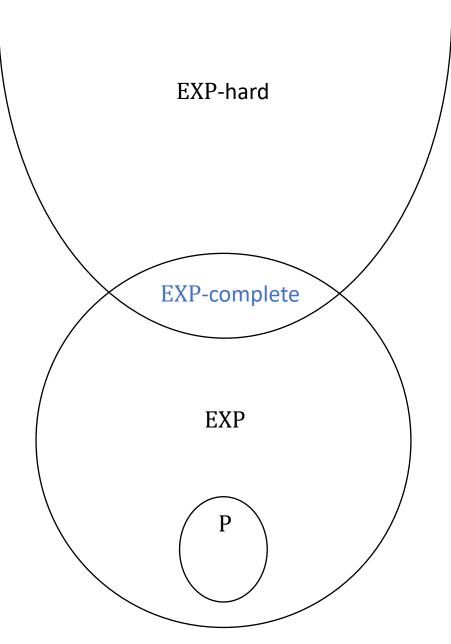
EXP-hardness

- **Definition:** Let *L* be a language. Suppose that for every $L' \in EXP$, there is a poly-time mapping reduction from *L'* to *L*. In this case, we say that *L* is EXP-hard
- "L is EXP-hard" means "L is at least as hard as any language in EXP"

EXP-completeness

- **Definition:** Let *L* be a language. We say that *L* is EXP-complete if *L* is EXP-hard and $L \in EXP$
- The EXP-complete languages are the hardest languages in EXP
- If *L* is EXP-complete, then the language *L* can be said to "capture" / "express" the entire complexity class EXP

EXP-completeness



EXP-complete languages are not in P

- **Claim:** If *L* is EXP-complete, then $L \notin P$
- **Proof:** Since $P \neq EXP$, there exists $L_{HARD} \in EXP \setminus P$
- Since L is EXP-hard, there is a poly-time mapping reduction from $L_{\rm HARD}$ to L
- Since $L_{\text{HARD}} \notin P$, this implies $L \notin P$

BOUNDED-HALT is **EXP**-complete

- Let BOUNDED-HALT = { $\langle M, w, T \rangle$: *M* halts on *w* within *T* steps}
- Claim: BOUNDED-HALT is EXP-complete
- **Proof:** First, let's show that BOUNDED-HALT ∈ EXP
- Algorithm: Given $\langle M, w, T \rangle$, we simulate M on w for T steps
- Exercise: This algorithm has time complexity

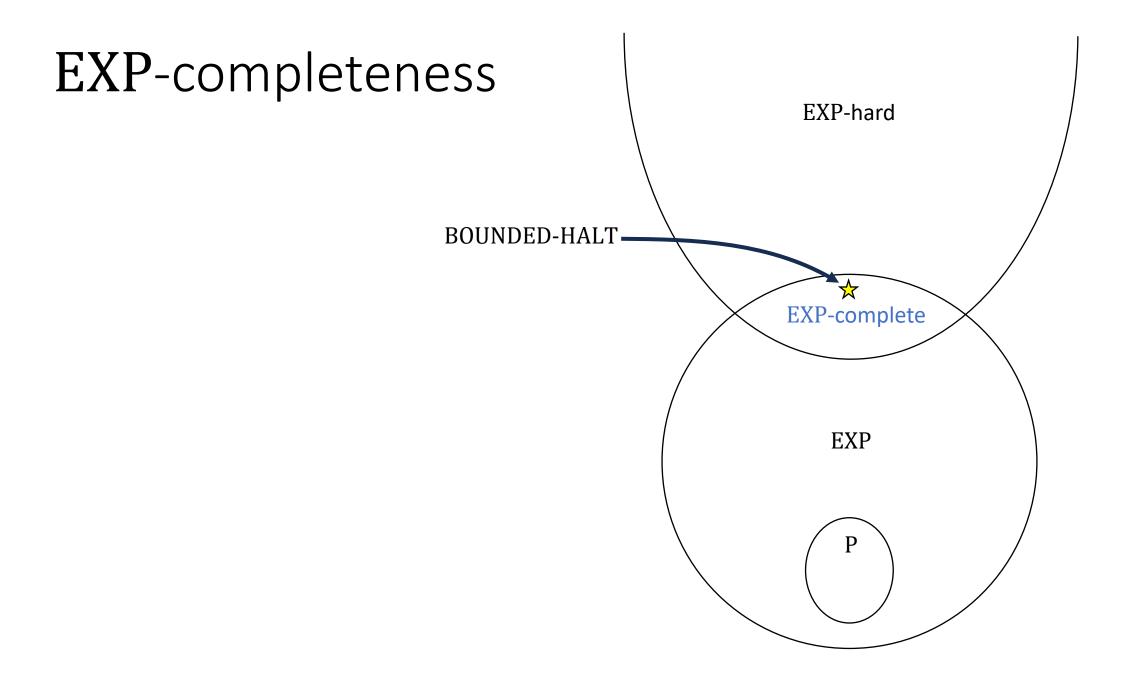
$$O(|\langle M \rangle| \cdot T^2) = O(n \cdot (2^n)^2) = 2^{O(n)}$$

BOUNDED-HALT is **EXP**-complete

- Next, we need to show that BOUNDED-HALT is EXP-hard
- Fix any $L \in \text{EXP}$. Let M_L be a TM that decides L in time $C \cdot 2^{n^k}$
- Reduction from *L* to BOUNDED-HALT: $f(w) = \langle M'_L, w, C \cdot 2^{n^k} \rangle$, where M'_L

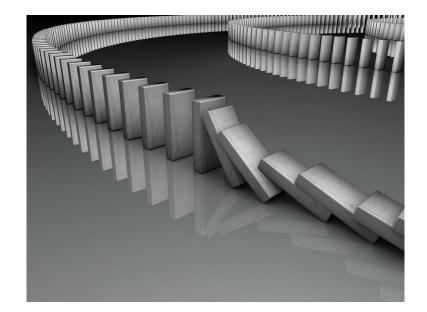
is a modified version of M_L in which q_{reject} has been replaced with looping

• Poly-time computable \checkmark YES maps to YES \checkmark NO maps to NO \checkmark



EXP-completeness

- EXP-completeness is a valuable technique for identifying languages outside P
- If *L* is EXP-complete, then $L \notin P$
- There are many interesting EXP-complete languages



An EXP-complete problem that isn't about TMs

- Let GENERALIZED-CHESS = { $\langle P \rangle$: *P* is an arrangement of chess pieces on an *N* × *N* board from which "white" can force a win}
- (Exercise: Precisely define GENERALIZED-CHESS)

Theorem: GENERALIZED-CHESS is EXP-complete. Consequently, GENERALIZED-CHESS ∉ P.

• (Proof omitted. This theorem will not be on psets/exams)

EXP-completeness

- EXP-completeness is a valuable tool for identifying intractability
- Is EXP-completeness the only tool we need for identifying intractability?

The clique problem

• A k-clique in a graph G = (V, E) is a set $S \subseteq V$ such that |S| = k and

every two vertices in S are connected by an edge

Example: This graph has a 4-clique
Which of the following statements is false?
A: Every vertex in a k-clique has degree at least k - 1
B: A single graph might have many k-cliques
C: If G has fewer than (^k₂) edges, then G does not have a k-clique
D: If every vertex has degree at least k - 1, then G has a k-clique
Respond at PollEv.com/whoza or text "whoza" to 22333

The clique problem

- Let CLIQUE = { $\langle G, k \rangle$: *G* has a *k*-clique}
- Example: Let G be the graph with the following adjacency matrix
- Does G have a 4-clique?

	а	b	С	d	е	f	g
а	0	1	1	0	0	1	0
b	1	0	0	1	1	0	1
С	1	0	0	0	1	0	1
d	0	1	0	0	1	0	1
е	0	1	1	1	0	1	1
f	1	0	0	0	1	0	1
g	0	1	1	1	1	1	0

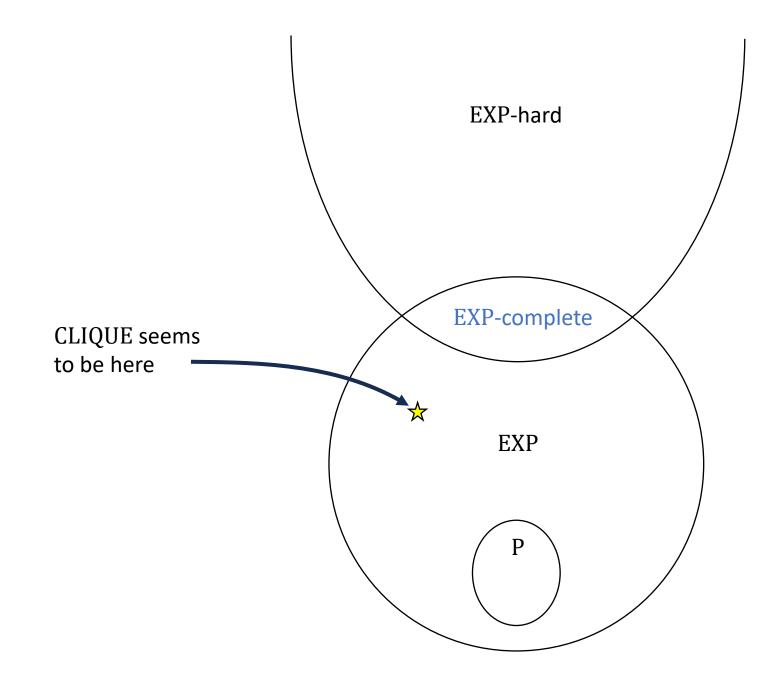
The clique problem

- Let CLIQUE = { $\langle G, k \rangle$: *G* has a *k*-clique}
- Example: Let G be the graph with the following adjacency matrix
- Does *G* have a 4-clique?
- Yes! $S = \{b, d, e, g\}$

	а	b	С	d	е	f	g
а	0	1	1	0	0	1	0
b	1	0	0	1	1	0	1
С	1	0	0	0	1	0	1
d	0	1	0	0	1	0	1
е	0	1	1	1	0	1	1
f	1	0	0	0	1	0	1
g	0	1	1	1	1	1	0

Complexity of the clique problem

- Let CLIQUE = { $\langle G, k \rangle$: *G* has a *k*-clique}
- CLIQUE \in EXP. (Why?)
- If you spend a while trying to design a good algorithm, eventually you might start to suspect that CLIQUE \notin P
- However, if you spend a while trying to design a good reduction, eventually you might start to suspect that CLIQUE is not EXP-complete either!



Complexity of the clique problem

• Evidently, to understand the complexity of CLIQUE, we need new conceptual tools

Guessing and checking

- **Key insight:** There exists a polynomial-time randomized Turing machine *M* with the following properties.
 - If $\langle G, k \rangle \notin CLIQUE$, then $Pr[M \text{ accepts } \langle G, k \rangle] = 0$.
 - If $\langle G, k \rangle \in \text{CLIQUE}$, then $\Pr[M \text{ accepts } \langle G, k \rangle] \neq 0$.

"Nondeterministic TM"

• **Proof:** *M* picks a random subset of the vertices, accepts if it is a *k*-clique, and rejects otherwise.

The complexity class NP

- Let $L \subseteq \Sigma^*$ be a language
- **Definition:** $L \in \mathbb{NP}$ if there exists a randomized polynomial-time

Turing machine M such that for every $w \in \Sigma^*$:

- If $w \in L$, then $\Pr[M \text{ accepts } w] \neq 0$
- If $w \notin L$, then $\Pr[M \text{ accepts } w] = 0$
- "<u>N</u>ondeterministic <u>P</u>olynomial-time"

Another example of a language in NP

- Let FACTOR = { $\langle N, K \rangle$: N has a prime factor $p \le K$ }
- **Claim:** FACTOR \in NP
- Proof:
 - 1. Pick $M \in \{2, 3, 4, ..., K\}$ uniformly at random
 - 2. Check whether N is a multiple of M by long division
 - 3. If it is, accept; if it isn't, reject

How to interpret NP

- NP is not intended to model the concept of tractability
- A nondeterministic polynomial-time algorithm is not a practical way to solve a problem
- Instead, NP is a conceptual tool for reasoning about computation

Terminology:

"Verificatic • A poly-time TM that decides R is called a verifier for L • If $\langle w, x \rangle \in R$, then x is called a certificate/witness for w

- Let $L \subseteq \Sigma^*$ be a language
- Claim: $L \in NP$ if and only if there exists $k \in \mathbb{N}$ and $R \in P$ such that
 - For every $w \in L$, there exists x such that $|x| \leq |w|^k$ and $\langle w, x \rangle \in R$
 - For every $w \notin L$, for every x, we have $\langle w, x \rangle \notin R$
- **Proof:** (\Rightarrow) Let $R = \{\langle w, x \rangle : M \text{ accepts } w \text{ when } x \text{ is on tape } 2\}$
- (\Leftarrow) Pick x at random. Accept if $\langle w, x \rangle \in R$ and reject otherwise

The P vs. NP problem

- $P \subseteq NP$ (why?)
- Does P = NP?
- "P = NP" would mean that finding a solution is never significantly harder

than verifying someone else's solution

• This would be counterintuitive!

Conjecture: $P \neq NP$

NP

Р

The P vs. NP problem

- Nobody knows how to prove that $P \neq NP$
- The question of whether P = NP is one of the most important open questions in theoretical computer science and mathematics
- The Clay Mathematics Institute will give you \$1 million if you prove $P \neq NP$ (or if you prove P = NP)

Solving problems in NP by brute force

- Claim: NP \subseteq PSPACE
- **Proof:** Let *M* be a nondeterministic TM that runs in time n^k . Given $w \in \Sigma^n$:
 - 1. For every $x \in \{0, 1\}^{n^k}$, simulate M, initialized with w on tape 1 and x on tape 2
 - 2. If we find some x such that M accepts, accept. Otherwise, reject
- NP can be informally defined as "the set of problems that can be solved by brute-force search"

