
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

The complexity class NP

• Let 𝐿 ⊆ Σ∗ be a language

• Definition: 𝐿 ∈ NP if there exists a randomized polynomial-time

Turing machine 𝑀 such that for every 𝑤 ∈ Σ∗:

• If 𝑤 ∈ 𝐿, then Pr 𝑀 accepts 𝑤 ≠ 0

• If 𝑤 ∉ 𝐿, then Pr 𝑀 accepts 𝑤 = 0

• “Nondeterministic Polynomial-time”

2

How to interpret NP

• NP is not intended to model the concept of tractability

• A nondeterministic polynomial-time algorithm is not a practical way

to solve a problem

• Instead, NP is a conceptual tool for reasoning about computation

3

“Verification of certificates” perspective

• Let 𝐿 ⊆ Σ∗ be a language

• Claim: 𝐿 ∈ NP if and only if there exists a deterministic polynomial-time

Turing machine 𝑉 (a “verifier”) and a constant 𝑘 ∈ ℕ such that:

• For every 𝑤 ∈ 𝐿, there exists a string 𝑥 (a “certificate” / “witness”) such that

𝑥 ≤ 𝑤 𝑘 and 𝑉 accepts ⟨𝑤, 𝑥⟩

• For every 𝑤 ∉ 𝐿, for every string 𝑥, the machine 𝑉 rejects 𝑤, 𝑥

4

The P vs. NP problem

• P ⊆ NP

• It is conjectured that P ≠ NP, but nobody knows

how to prove it

5

P

NP

Solving problems in NP by brute force

• Claim: NP ⊆ PSPACE

• Proof: Let 𝑀 be a nondeterministic TM that runs in time 𝑛𝑘. Given 𝑤 ∈ Σ𝑛:

1. For every 𝑥 ∈ 0, 1 𝑛𝑘
, simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑥 on tape 2

2. If we find some 𝑥 such that 𝑀 accepts, accept. Otherwise, reject

• NP can be informally defined as “the set of problems that can be solved by

brute-force search”

6

7

P

PSPACE

EXP

NP

P vs. NP vs. PSPACE vs. EXP

• P ⊆ NP ⊆ PSPACE ⊆ EXP

• What we expect: All of these containments are strict

• What we can prove: At least one of these containments is strict. (Why?)

8

Complexity of CLIQUE

• Recall: CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• Last time, we discussed the fact that CLIQUE ∈ NP

• Consequence: If P = NP, then CLIQUE ∈ P

• Plan for this week: We will prove that if P ≠ NP, then CLIQUE ∉ P

• This will provide evidence that CLIQUE ∉ P

• To prove it, we will use concepts of NP-hardness and NP-completeness

9

NP-hardness

• Definition: Let 𝐿 be a language. Suppose that for every 𝐿′ ∈ NP, there

is a poly-time mapping reduction from 𝐿′ to 𝐿. In this case, we say

that 𝐿 is NP-hard

• “𝐿 is NP-hard” means “𝐿 is at least as hard as every language in NP”

10

NP-completeness

• Definition: Let 𝐿 be a language. We say that 𝐿 is NP-complete if 𝐿 is

NP-hard and 𝐿 ∈ NP

• The NP-complete languages are the hardest languages in NP

• If 𝐿 is NP-complete, then the language 𝐿 can be said to “capture” /

“express” the entire complexity class NP

11

NP-complete languages are probably not in P

• Claim: Suppose 𝐿 is NP-complete. Then 𝐿 ∈ P if and only if P = NP

• Proof: First, assume P = NP. Since 𝐿 ∈ NP, it follows that 𝐿 ∈ P

• Now assume P ≠ NP, i.e., there is some language 𝐿HARD ∈ NP ∖ P

• By NP-hardness, there is a poly-time mapping reduction from 𝐿HARD to 𝐿

• Since 𝐿HARD ∉ P, this implies 𝐿 ∉ P

12

NP-completeness

13

P

NP

NP-complete

NP-hard

Proving NP-completeness

• How can we prove that a language like CLIQUE is NP-complete?

• How can we use graph theory to simulate Turing machines?

• Key idea: Code as Data

14

Code as data, revisited

• Recall principle: A Turing machine 𝑀 can be encoded as a string 𝑀

• 𝑀 is an algorithm, but at the same time, 𝑀 can be an input to another algorithm!

• Similar idea: A circuit 𝐶 can be encoded as a string 𝐶

• You investigated ways to do this on problem set 5

• 𝐶 is an “algorithm,” but at the same time, 𝐶 can be an input to another algorithm!

• What can we do with this idea?

15

Circuit value problem

• Let CIRCUIT-VALUE = { 𝐶, 𝑥 ∶ 𝐶 is a circuit and 𝐶 𝑥 = 1}

• Claim: CIRCUIT-VALUE ∈ P

• Proof sketch: Suppose 𝐶 has 𝑚 nodes. To compute 𝐶 𝑥 :

1) Mark all the input nodes with their values

2) While there is an unmarked node:

a) For every gate 𝑔, find all the nodes that feed into 𝑔. If they are all marked with their

values, then mark 𝑔 with its value

16

Constructing circuits that implement TMs

• Let 𝐿 ∈ P where 𝐿 ⊆ Σ∗

• Since P ⊆ PSIZE, we know that for every 𝑛, there exists a polynomial-size

circuit that computes 𝐿𝑛, i.e., it decides 𝐿 on inputs of length 𝑛

• Proof sketch: Use the circuit construction we used to prove P ⊆ PSIZE
17

Theorem: There is a polynomial-time algorithm such that given 1𝑛, the

algorithm outputs the description 𝐶 of a circuit 𝐶 that computes 𝐿𝑛

Let 𝑥 be an input to 𝐶. How should 𝑥 be interpreted?

Respond at PollEv.com/whoza or text “whoza” to 22333

B: 𝑥 is the description of a Turing
machine that decides 𝐿

A: 𝑥 is the description of a circuit
that decides 𝐿

D: 𝑥 is the binary encoding of a
string in 𝐿

C: 𝑥 is the binary encoding of a
string in Σ𝑛

Circuit satisfiability

• Let 𝐶 be an 𝑛-input 1-output circuit

• We say that 𝐶 is satisfiable if there exists

𝑥 ∈ {0, 1}𝑛 such that 𝐶 𝑥 = 1

18

∧

𝑥2

∨

∧

𝑥1

¬
Satisfiable

Unsatisfiable

∧

𝑥2

∨

∧

𝑥1

¬ ¬

Circuit satisfiability is NP-complete

• Let CIRCUIT-SAT = { 𝐶 ∶ 𝐶 is a satisfiable circuit}

• Consequence: Studying CIRCUIT-SAT (one specific language) is

equivalent to studying the abstract concept of “verifiability” (as

modeled by the complexity class NP)

19

Theorem: CIRCUIT-SAT is NP-complete.

Proof that CIRCUIT-SAT ∈ NP

• Given 𝐶 , where 𝐶 is an 𝑛-input 1-output circuit:

1. Pick 𝑥 ∈ 0, 1 𝑛 at random

2. Check whether 𝐶 𝑥 = 1 (recall CIRCUIT-VALUE ∈ P)

3. Accept if 𝐶 𝑥 = 1; reject if 𝐶 𝑥 = 0

20

Proof that CIRCUIT-SAT is NP-hard

• Let 𝐿 be any language in NP

• Our job: Design a mapping reduction from 𝐿 to CIRCUIT-SAT

21

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: The complexity class NP
	Slide 3: How to interpret NP
	Slide 4: “Verification of certificates” perspective
	Slide 5: The P vs. NP problem
	Slide 6: Solving problems in NP by brute force
	Slide 7
	Slide 8: P vs. NP vs. PSPACE vs. EXP
	Slide 9: Complexity of CLIQUE
	Slide 10: NP-hardness
	Slide 11: NP-completeness
	Slide 12: NP-complete languages are probably not in P
	Slide 13: NP-completeness
	Slide 14: Proving NP-completeness
	Slide 15: Code as data, revisited
	Slide 16: Circuit value problem
	Slide 17: Constructing circuits that implement TMs
	Slide 18: Circuit satisfiability
	Slide 19: Circuit satisfiability is NP-complete
	Slide 20: Proof that CIRCUIT‑SAT element of NP
	Slide 21: Proof that CIRCUIT‑SAT is NP-hard

