CMSC 28100

Introduction to Complexity Theory

Spring 2024 Instructor: William Hoza

The complexity class NP

- Let $L \subseteq \Sigma^*$ be a language
- **Definition:** $L \in \mathbb{NP}$ if there exists a randomized polynomial-time

Turing machine M such that for every $w \in \Sigma^*$:

- If $w \in L$, then $\Pr[M \text{ accepts } w] \neq 0$
- If $w \notin L$, then $\Pr[M \text{ accepts } w] = 0$
- "<u>N</u>ondeterministic <u>P</u>olynomial-time"

How to interpret NP

- NP is not intended to model the concept of tractability
- A nondeterministic polynomial-time algorithm is not a practical way to solve a problem
- Instead, NP is a conceptual tool for reasoning about computation

"Verification of certificates" perspective

- Let $L \subseteq \Sigma^*$ be a language
- Claim: $L \in NP$ if and only if there exists a deterministic polynomial-time Turing machine V (a "verifier") and a constant $k \in \mathbb{N}$ such that:
 - For every $w \in L$, there exists a string x (a "certificate" / "witness") such that $|x| \leq |w|^k$ and V accepts $\langle w, x \rangle$
 - For every $w \notin L$, for every string x, the machine V rejects $\langle w, x \rangle$

The P vs. NP problem

• $P \subseteq NP$

• It is conjectured that $P \neq NP$, but nobody knows

how to prove it

Solving problems in NP by brute force

- **Claim:** NP \subseteq PSPACE
- **Proof:** Let *M* be a nondeterministic TM that runs in time n^k . Given $w \in \Sigma^n$:
 - 1. For every $x \in \{0, 1\}^{n^k}$, simulate M, initialized with w on tape 1 and x on tape 2
 - 2. If we find some x such that M accepts, accept. Otherwise, reject
- NP can be informally defined as "the set of problems that can be solved by brute-force search"

P vs. NP vs. PSPACE vs. EXP

- $P \subseteq NP \subseteq PSPACE \subseteq EXP$
- What we expect: All of these containments are strict
- What we can prove: At least one of these containments is strict. (Why?)

Complexity of CLIQUE

- Recall: CLIQUE = { $\langle G, k \rangle$: G has a k-clique}
- Last time, we discussed the fact that CLIQUE ∈ NP
- Consequence: If P = NP, then $CLIQUE \in P$
- Plan for this week: We will prove that if $P \neq NP$, then CLIQUE $\notin P$
 - This will provide evidence that CLIQUE ∉ P
- To prove it, we will use concepts of NP-hardness and NP-completeness

NP-hardness

- **Definition:** Let *L* be a language. Suppose that for every $L' \in NP$, there is a poly-time mapping reduction from L' to *L*. In this case, we say that *L* is NP-hard
- "L is NP-hard" means "L is at least as hard as every language in NP"

NP-completeness

- **Definition:** Let *L* be a language. We say that *L* is NP-complete if *L* is NP-hard and $L \in NP$
- The NP-complete languages are the hardest languages in NP
- If *L* is NP-complete, then the language *L* can be said to "capture" / "express" the entire complexity class NP

NP-complete languages are probably not in P

- Claim: Suppose L is NP-complete. Then $L \in P$ if and only if P = NP
- **Proof:** First, assume P = NP. Since $L \in NP$, it follows that $L \in P$
- Now assume $P \neq NP$, i.e., there is some language $L_{HARD} \in NP \setminus P$
- By NP-hardness, there is a poly-time mapping reduction from $L_{\rm HARD}$ to L
- Since $L_{\text{HARD}} \notin P$, this implies $L \notin P \checkmark$

NP-completeness

Proving NP-completeness

- How can we prove that a language like CLIQUE is NP-complete?
- How can we use graph theory to simulate Turing machines?
- Key idea: Code as Data

Code as data, revisited

- Recall principle: A Turing machine M can be encoded as a string $\langle M \rangle$
 - *M* is an algorithm, but at the same time, $\langle M \rangle$ can be an input to another algorithm!
- Similar idea: A circuit C can be encoded as a string $\langle C \rangle$
 - You investigated ways to do this on problem set 5
 - *C* is an "algorithm," but at the same time, $\langle C \rangle$ can be an input to another algorithm!
 - What can we do with this idea?

Circuit value problem

- Let CIRCUIT-VALUE = { $\langle C, x \rangle$: *C* is a circuit and C(x) = 1}
- **Claim:** CIRCUIT-VALUE \in P
- **Proof sketch:** Suppose C has m nodes. To compute C(x):
 - 1) Mark all the input nodes with their values
 - 2) While there is an unmarked node:
 - a) For every gate g, find all the nodes that feed into g. If they are all marked with their values, then mark g with its value

circuit that computes L_n , i.e., it decides L on inputs of length n

Theorem: There is a polynomial-time algorithm such that given 1^n , the algorithm outputs the description $\langle C \rangle$ of a circuit *C* that computes L_n

• **Proof sketch:** Use the circuit construction we used to prove $P \subseteq PSIZE$

Circuit satisfiability

- Let *C* be an *n*-input 1-output circuit
- We say that C is satisfiable if there exists

 $x \in \{0, 1\}^n$ such that C(x) = 1

Satisfiable

Unsatisfiable

Circuit satisfiability is NP-complete

• Let CIRCUIT-SAT = $\{\langle C \rangle : C \text{ is a satisfiable circuit}\}$

Theorem: CIRCUIT-SAT is NP-complete.

 Consequence: Studying CIRCUIT-SAT (one specific language) is equivalent to studying the abstract concept of "verifiability" (as modeled by the complexity class NP)

Proof that CIRCUIT-SAT \in NP

- Given $\langle C \rangle$, where C is an n-input 1-output circuit:
 - 1. Pick $x \in \{0, 1\}^n$ at random
 - 2. Check whether C(x) = 1

(recall CIRCUIT-VALUE \in P)

3. Accept if C(x) = 1; reject if C(x) = 0

Proof that CIRCUIT-SAT is NP-hard

- Let *L* be any language in NP
- Our job: Design a mapping reduction from *L* to CIRCUIT-SAT