CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza




Circuit satisfiability

* We say that a circuit C is satisfiable if there exists x € {0, 1}" such
that C(x) = 1

e Let CIRCUIT-SAT = {(C) : C is a satisfiable circuit}

Theorem: CIRCUIT-SAT is NP-complete.




Proof that CIRCUIT-SAT € NP

(1)

* Given (C), where C is an n-input 1-output circuit:
1. Pickx € {0,1}" at random
2. Check whether C(x) =1 (recall CIRCUIT-VALUE € P)

3. Acceptif C(x) = 1;rejectif C(x) =0



Proof that CIRCUIT-SAT is NP-hard

* Let L be any language in NP
* Qur job: Design a mapping reduction from L to CIRCUIT-SAT

e |dea: Let’s build a “verification circuit” for L



Given w, how do we efficiently construct (C)? >

PrOOf that CIRCI<A Simulate M on w and output ><B: Calculate t, then make a t X ¢ >

the corresponding circuit grid of copies of C, (a fixed circui

< C: Inspect the transition function >< D: We don’t; all that matters is >
. . of M and implement it as a circuit the fact that (C) exists
e Let M be a nondeterminis P G

Respond at PollEv.com/whoza or text “whoza” to 22333

* Let R = {w#u : M accepts w when initialized with u on tape 2}

e R € P € PSIZE, and as discussed last time, the circuits are efficiently

constructible

* Reduction step 1: Given w, construct (C), where C is a circuit that

computes R, form = |w| + 1+ T(Jjw|)



Proof that CIRCUIT-SAT is NP-hard

Reduction step 2

X1 X X3 Xy Xs Xg X Xm 0 1 1 0 1 X1 Xy
N— A
——

w# “hard-coded” into circuit

 w € L if and only if there exists u such that C({w#u)) = 1

 Reduction: f(w) = (C"), where C'({u)) = C((w#u))



Proof that CIRCUIT-SAT is NP-hard

 Reduction: f(w) = (C"), where C'((u)) = C((w#u)) and C computes R,,

* YES maps to YES:
* If w € L, then Pr[M accepts w] # 0
* Therefore, there exists u € {0, 1}7U¥D such that w#u € R

* Therefore, C({w#u)) =1
e Therefore, C'({u)) = 1, so C' is satisfiable &/



Proof that CIRCUIT-SAT is NP-hard

* Reduction: f(w) = (C"), where C'((u)) = C((w#u)) and C computes R,

* NO maps to NO:
« Suppose C' is satisfiable, i.e., there exists u € {0, 1}7UWD such that C'((u)) = 1
* Then C({(w#u)) =1, sowHu € R
* Therefore, Pr[M accepts w]| # 0

e Therefore, w € L



Proof that CIRCUIT-SAT is NP-hard

 Reduction: f(w) = (C"), where C'({u)) = C((w#u)) and C computes R,

* Polynomial-time computable:
1. Compute (C). This takes poly(m) = poly(n) time «/

2. Plug in w#. This takes poly(n) time «/



NP-completeness

CIRCUIT-SAT

NP-hard

DAY
NP-complete

10



Y | 1L

mm“‘“‘
e

What else is NP-complete?

|
\

|

 We showed that CIRCUIT-SAT is NP-complete

* It turns out that a huge number of natural,
interesting, and important languages are

NP-complete!

* For example, we still want to show that CLIQUE is NP-complete...

* To prove NP-hardness, we can chain reductions together

11



Chaining reductions together

* Claim: Suppose Lyarp is NP-hard and there is a polynomial-time

mapping reduction f from Lyarp to Lygw- Then Lygw is NP-hard
* Proof: Let L be any language in NP

* There is a polynomial-time mapping reduction g from L to Lyarp

 Reduction from L to Lygw: h(w) = f(g(w))

e Poly-time computable &/ YES maps to YES & NO maps to NO «/

12



Chaining reductions together

* Consequence: To prove that CLIQUE is
NP-complete, there is no need to reduce from

an arbitrary language in NP
* We “merely” need to do a reduction from the one language CIRCUIT-SAT
* That’s nice, but it’s still not clear how to reduce CIRCUIT-SAT to CLIQUE...

* Plan: We will reduce CIRCUIT-SAT to “3-SAT” and “3-SAT” to CLIQUE

13



k-CNF formulas

e Recall: A CNF formula is an “AND of ORs of literals”

* Definition: A k-CNF formula is a CNF formula in which every clause

has at most k literals

* Example of a 3-CNF formula with two clauses:

¢ —_ (X1Vf2 Vf6)/\(x5 Vx1VX2)

14



The Cook-Levin Theorem

* Define k-SAT = {{¢) : ¢ is a satisfiable k-CNF formula}

The Cook-Levin Theorem: 3-SAT is NP-complete

* Proof: We need to show two things.
1. We need to show 3-SAT € NP. What is the certificate?

2. We need to show that 3-SAT is NP-hard. Reduction from CIRCUIT-SAT

15



Gate gadgets

* Define the following Boolean functions:

1ifg=y
CHECK-NOT(g,vy) = _
(9,) {0 otherwise

CHECK-AND(g,y,2) = {1 19 = A2)
0 otherwise

CHECK-OR(g,y,z) = |+ 19 =0V2)
0 otherwise

e Each can be represented by a 3-CNF formula. (Every function has a CNF

representation!)

16



Reduction from CIRCUIT-SAT to 3-SAT

 Reduction: f({C)) = (@), where ¢ is a 3-CNF defined as follows

* Circuit C has variables x4, x5, ..., x,, and AND/OR/NOT gates g, ..., gm
* Assume without loss of generality that g,, is the output gate

* Formula ¢ has n + m variables, which we denote x4, ..., X, 91, -+, 9m

* Note: In C, “g;” is the name of a gate. In ¢, “g;” is the name of a variable

17



Reduction from CIRCUIT-SAT to 3-SAT

* For each AND/OR/NOT gate g; in the circuit C, define a 3-CNF ¢;:

4 N

T

y

4 N

A

y VA

¢; = CHECK-NOT(g;,y)

\_ /

¢; = CHECK-AND(g;,y, z)

\_ /

4 N

A

y Z

¢; = CHECK-OR(g;,y, z)

\_ /

* Reduction produces ¢p:= ¢y Ay A APy A (Gy)

18



Reduction example

* ¢, = CHECK-NOT(g4,x1) = (g1 Vx1) A (g1 V X1)
* ¢, = CHECK-NOT(gy, x3) = (g2 V x3) A (g2 V X3)

* ¢3 = CHECK-AND(g3,x1,92) = (g3 Vx1) A(gz3V g2) AN(g3 VX1 V G3)

* ¢, = CHECK-AND(gy4, 91,%2) = (G4 V g1) A(Ga V x2) AN(gs V g1 V X3)

* ¢5 = CHECK-OR(gs,93,94) = (g5 V g3) A(gs V G4) AN (g5 V g3 V g4)

=1 Vx)AN(@G1VX)AN(G2 VX)) AN(GaVX)NA(G3Vx)A(G3V gr)
AN(GzV X VG)ANGaVg) N(GaVx) N(GeV g1 VX)) A(gsV gs)
A(GsV gu) AN(gsV gsV gsa) A(9gs)

19



YES maps to YES

* Claim: If the circuit C is satisfiable, then the 3-CNF formula ¢ is also

satisfiable
* Proof: We are assuming there is some x € {0,1}"* suchthat C(x) = 1

* For each i, assign to g; (the variable) the value that g; (the gate)

outputs when we evaluate C on x

20



	Slide 1: CMSC 28100  Introduction to Complexity Theory  Spring 2024 Instructor: William Hoza
	Slide 2: Circuit satisfiability
	Slide 3: Proof that CIRCUIT‑SAT element of NP
	Slide 4: Proof that CIRCUIT‑SAT is NP-hard
	Slide 5: Proof that CIRCUIT‑SAT is NP-hard
	Slide 6: Proof that CIRCUIT‑SAT is NP-hard
	Slide 7: Proof that CIRCUIT‑SAT is NP-hard
	Slide 8: Proof that CIRCUIT‑SAT is NP-hard
	Slide 9: Proof that CIRCUIT‑SAT is NP-hard
	Slide 10: NP-completeness
	Slide 11: What else is NP-complete?
	Slide 12: Chaining reductions together
	Slide 13: Chaining reductions together
	Slide 14: k-CNF formulas
	Slide 15: The Cook-Levin Theorem
	Slide 16: Gate gadgets
	Slide 17: Reduction from CIRCUIT‑SAT to 3‑SAT
	Slide 18: Reduction from CIRCUIT‑SAT to 3‑SAT
	Slide 19: Reduction example
	Slide 20: YES maps to YES

