
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Circuit satisfiability

• We say that a circuit 𝐶 is satisfiable if there exists 𝑥 ∈ {0, 1}𝑛 such

that 𝐶 𝑥 = 1

• Let CIRCUIT-SAT = { 𝐶 ∶ 𝐶 is a satisfiable circuit}

2

Theorem: CIRCUIT-SAT is NP-complete.

Proof that CIRCUIT-SAT ∈ NP

• Given 𝐶 , where 𝐶 is an 𝑛-input 1-output circuit:

1. Pick 𝑥 ∈ 0, 1 𝑛 at random

2. Check whether 𝐶 𝑥 = 1 (recall CIRCUIT-VALUE ∈ P)

3. Accept if 𝐶 𝑥 = 1; reject if 𝐶 𝑥 = 0

3

Proof that CIRCUIT-SAT is NP-hard

• Let 𝐿 be any language in NP

• Our job: Design a mapping reduction from 𝐿 to CIRCUIT-SAT

• Idea: Let’s build a “verification circuit” for 𝐿

4

Proof that CIRCUIT-SAT is NP-hard

• Let 𝑀 be a nondeterministic TM that decides 𝐿 in time 𝑇 𝑛 = poly 𝑛

• Let 𝑅 = 𝑤#𝑢 ∶ 𝑀 accepts 𝑤 when initialized with 𝑢 on tape 2

• 𝑅 ∈ P ⊆ PSIZE, and as discussed last time, the circuits are efficiently

constructible

• Reduction step 1: Given 𝑤, construct 𝐶 , where 𝐶 is a circuit that

computes 𝑅𝑚 for 𝑚 = 𝑤 + 1 + 𝑇 𝑤

5

Given 𝑤, how do we efficiently construct ⟨𝐶⟩?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: Inspect the transition function
of 𝑀 and implement it as a circuit

A: Simulate 𝑀 on 𝑤 and output
the corresponding circuit

D: We don’t; all that matters is
the fact that 𝐶 exists

B: Calculate 𝑡, then make a 𝑡 × 𝑡
grid of copies of 𝐶0 (a fixed circuit)

Proof that CIRCUIT-SAT is NP-hard

• 𝑤 ∈ 𝐿 if and only if there exists 𝑢 such that 𝐶 𝑤#𝑢 = 1

• Reduction: 𝑓 𝑤 = ⟨𝐶′⟩, where 𝐶′ 𝑢 = 𝐶 𝑤#𝑢

6

𝐶

⋯

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥𝑚

𝐶′

⋯

0 1 1 0 1 𝑥1 𝑥2 𝑥𝑟

⋯

𝑤# “hard-coded” into circuit

Reduction step 2

Proof that CIRCUIT-SAT is NP-hard

• Reduction: 𝑓 𝑤 = ⟨𝐶′⟩, where 𝐶′ 𝑢 = 𝐶 𝑤#𝑢 and 𝐶 computes 𝑅𝑚

• YES maps to YES:

• If 𝑤 ∈ 𝐿, then Pr 𝑀 accepts 𝑤 ≠ 0

• Therefore, there exists 𝑢 ∈ 0, 1 𝑇 𝑤 such that 𝑤#𝑢 ∈ 𝑅

• Therefore, 𝐶 𝑤#𝑢 = 1

• Therefore, 𝐶′ 𝑢 = 1, so 𝐶′ is satisfiable

7

Proof that CIRCUIT-SAT is NP-hard

• Reduction: 𝑓 𝑤 = ⟨𝐶′⟩, where 𝐶′ 𝑢 = 𝐶 𝑤#𝑢 and 𝐶 computes 𝑅𝑚

• NO maps to NO:

• Suppose 𝐶′ is satisfiable, i.e., there exists 𝑢 ∈ 0, 1 𝑇 𝑤 such that 𝐶′ 𝑢 = 1

• Then 𝐶 𝑤#𝑢 = 1, so 𝑤#𝑢 ∈ 𝑅

• Therefore, Pr 𝑀 accepts 𝑤 ≠ 0

• Therefore, 𝑤 ∈ 𝐿

8

Proof that CIRCUIT-SAT is NP-hard

• Reduction: 𝑓 𝑤 = ⟨𝐶′⟩, where 𝐶′ 𝑢 = 𝐶 𝑤#𝑢 and 𝐶 computes 𝑅𝑚

• Polynomial-time computable:

1. Compute ⟨𝐶⟩. This takes poly 𝑚 = poly 𝑛 time

2. Plug in 𝑤#. This takes poly 𝑛 time

9

NP-completeness

10

P

NP

NP-complete

NP-hard

CIRCUIT-SAT

What else is NP-complete?

• We showed that CIRCUIT-SAT is NP-complete

• It turns out that a huge number of natural,

interesting, and important languages are

NP-complete!

• For example, we still want to show that CLIQUE is NP-complete…

• To prove NP-hardness, we can chain reductions together

11

Chaining reductions together

• Claim: Suppose 𝐿HARD is NP-hard and there is a polynomial-time

mapping reduction 𝑓 from 𝐿HARD to 𝐿NEW. Then 𝐿NEW is NP-hard

• Proof: Let 𝐿 be any language in NP

• There is a polynomial-time mapping reduction 𝑔 from 𝐿 to 𝐿HARD

• Reduction from 𝐿 to 𝐿NEW: ℎ 𝑤 = 𝑓 𝑔 𝑤

• Poly-time computable YES maps to YES NO maps to NO

12

Chaining reductions together

• Consequence: To prove that CLIQUE is

NP-complete, there is no need to reduce from

an arbitrary language in NP

• We “merely” need to do a reduction from the one language CIRCUIT-SAT

• That’s nice, but it’s still not clear how to reduce CIRCUIT-SAT to CLIQUE…

• Plan: We will reduce CIRCUIT-SAT to “3-SAT” and “3-SAT” to CLIQUE

13

𝑘-CNF formulas

• Recall: A CNF formula is an “AND of ORs of literals”

• Definition: A 𝑘-CNF formula is a CNF formula in which every clause

has at most 𝑘 literals

• Example of a 3-CNF formula with two clauses:

𝜙 = 𝑥1 ∨ ҧ𝑥2 ∨ ҧ𝑥6 ∧ 𝑥5 ∨ 𝑥1 ∨ 𝑥2

14

The Cook-Levin Theorem

• Define 𝑘-SAT = { 𝜙 ∶ 𝜙 is a satisfiable 𝑘-CNF formula}

• Proof: We need to show two things.

1. We need to show 3-SAT ∈ NP. What is the certificate?

2. We need to show that 3-SAT is NP-hard. Reduction from CIRCUIT-SAT

15

The Cook-Levin Theorem: 3-SAT is NP-complete

Gate gadgets

• Define the following Boolean functions:

CHECK-NOT 𝑔, 𝑦 = ቊ
1 if 𝑔 = ത𝑦
0 otherwise

CHECK-AND 𝑔, 𝑦, 𝑧 = ቊ
1 if 𝑔 = 𝑦 ∧ 𝑧
0 otherwise

CHECK-OR 𝑔, 𝑦, 𝑧 = ቊ
1 if 𝑔 = 𝑦 ∨ 𝑧
0 otherwise

• Each can be represented by a 3-CNF formula. (Every function has a CNF

representation!)
16

Reduction from CIRCUIT-SAT to 3-SAT

• Reduction: 𝑓 𝐶 = ⟨𝜙⟩, where 𝜙 is a 3-CNF defined as follows

• Circuit 𝐶 has variables 𝑥1, 𝑥2, … , 𝑥𝑛 and AND/OR/NOT gates 𝑔1, … , 𝑔𝑚

• Assume without loss of generality that 𝑔𝑚 is the output gate

• Formula 𝜙 has 𝑛 + 𝑚 variables, which we denote 𝑥1, … , 𝑥𝑛, 𝑔1, … , 𝑔𝑚

• Note: In 𝐶, “𝑔𝑖” is the name of a gate. In 𝜙, “𝑔𝑖” is the name of a variable

17

Reduction from CIRCUIT-SAT to 3-SAT

• For each AND/OR/NOT gate 𝑔𝑖 in the circuit 𝐶, define a 3-CNF 𝜙𝑖:

• Reduction produces 𝜙: = 𝜙1 ∧ 𝜙2 ∧ ⋯ ∧ 𝜙𝑚 ∧ 𝑔𝑚

18

¬

𝑦

𝑔𝑖

𝜙𝑖 = CHECK-NOT 𝑔𝑖 , 𝑦

∧

𝑦

𝑔𝑖

𝑧

𝜙𝑖 = CHECK-AND 𝑔𝑖 , 𝑦, 𝑧

∨

𝑦

𝑔𝑖

𝑧

𝜙𝑖 = CHECK-OR 𝑔𝑖 , 𝑦, 𝑧

Reduction example

• 𝜙1 = CHECK-NOT 𝑔1, 𝑥1 = 𝑔1 ∨ 𝑥1 ∧ (ҧ𝑔1 ∨ ҧ𝑥1)

• 𝜙2 = CHECK-NOT 𝑔2, 𝑥2 = 𝑔2 ∨ 𝑥2 ∧ ҧ𝑔2 ∨ ҧ𝑥2

• 𝜙3 = CHECK-AND 𝑔3, 𝑥1, 𝑔2 = ҧ𝑔3 ∨ 𝑥1 ∧ ҧ𝑔3 ∨ 𝑔2 ∧ 𝑔3 ∨ ҧ𝑥1 ∨ ҧ𝑔2

• 𝜙4 = CHECK-AND 𝑔4, 𝑔1, 𝑥2 = ҧ𝑔4 ∨ 𝑔1 ∧ ҧ𝑔4 ∨ 𝑥2 ∧ 𝑔4 ∨ ҧ𝑔1 ∨ ҧ𝑥2

• 𝜙5 = CHECK-OR 𝑔5, 𝑔3, 𝑔4 = 𝑔5 ∨ ҧ𝑔3 ∧ 𝑔5 ∨ ҧ𝑔4 ∧ ҧ𝑔5 ∨ 𝑔3 ∨ 𝑔4

19

∨

∧ ∧

𝑥1 𝑥2

¬ ¬

𝑔1 𝑔2

𝑔3 𝑔4

𝑔5

𝜙 = 𝑔1 ∨ 𝑥1 ∧ ҧ𝑔1 ∨ ҧ𝑥1 ∧ 𝑔2 ∨ 𝑥2 ∧ ҧ𝑔2 ∨ ҧ𝑥2 ∧ ҧ𝑔3 ∨ 𝑥1 ∧ ҧ𝑔3 ∨ 𝑔2

 ∧ 𝑔3 ∨ ҧ𝑥1 ∨ ҧ𝑔2 ∧ ҧ𝑔4 ∨ 𝑔1 ∧ ҧ𝑔4 ∨ 𝑥2 ∧ 𝑔4 ∨ ҧ𝑔1 ∨ ҧ𝑥2 ∧ 𝑔5 ∨ ҧ𝑔3

 ∧ 𝑔5 ∨ ҧ𝑔4 ∧ ҧ𝑔5 ∨ 𝑔3 ∨ 𝑔4 ∧ 𝑔5

YES maps to YES

• Claim: If the circuit 𝐶 is satisfiable, then the 3-CNF formula 𝜙 is also

satisfiable

• Proof: We are assuming there is some 𝑥 ∈ {0, 1}𝑛 such that 𝐶 𝑥 = 1

• For each 𝑖, assign to 𝑔𝑖 (the variable) the value that 𝑔𝑖 (the gate)

outputs when we evaluate 𝐶 on 𝑥

20

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Circuit satisfiability
	Slide 3: Proof that CIRCUIT‑SAT element of NP
	Slide 4: Proof that CIRCUIT‑SAT is NP-hard
	Slide 5: Proof that CIRCUIT‑SAT is NP-hard
	Slide 6: Proof that CIRCUIT‑SAT is NP-hard
	Slide 7: Proof that CIRCUIT‑SAT is NP-hard
	Slide 8: Proof that CIRCUIT‑SAT is NP-hard
	Slide 9: Proof that CIRCUIT‑SAT is NP-hard
	Slide 10: NP-completeness
	Slide 11: What else is NP-complete?
	Slide 12: Chaining reductions together
	Slide 13: Chaining reductions together
	Slide 14: k-CNF formulas
	Slide 15: The Cook-Levin Theorem
	Slide 16: Gate gadgets
	Slide 17: Reduction from CIRCUIT‑SAT to 3‑SAT
	Slide 18: Reduction from CIRCUIT‑SAT to 3‑SAT
	Slide 19: Reduction example
	Slide 20: YES maps to YES

