CMSC 28100

Introduction to Complexity Theory

Spring 2024 Instructor: William Hoza

Circuit satisfiability

- We say that a circuit C is satisfiable if there exists $x \in \{0, 1\}^n$ such that C(x) = 1
- Let CIRCUIT-SAT = { $\langle C \rangle$: *C* is a satisfiable circuit}

Theorem: CIRCUIT-SAT is NP-complete.

Proof that CIRCUIT-SAT \in NP

- Given $\langle C \rangle$, where C is an n-input 1-output circuit:
 - 1. Pick $x \in \{0, 1\}^n$ at random
 - 2. Check whether C(x) = 1

(recall CIRCUIT-VALUE \in P)

3. Accept if C(x) = 1; reject if C(x) = 0

- Let *L* be any language in NP
- Our job: Design a mapping reduction from *L* to CIRCUIT-SAT
- Idea: Let's build a "verification circuit" for L

- Let $R = \{w # u : M \text{ accepts } w \text{ when initialized with } u \text{ on tape } 2\}$
- *R* ∈ P ⊆ PSIZE, and as discussed last time, the circuits are efficiently constructible
- Reduction step 1: Given w, construct $\langle C \rangle$, where C is a circuit that computes R_m for m = |w| + 1 + T(|w|)

- $w \in L$ if and only if there exists u such that $C(\langle w \# u \rangle) = 1$
- Reduction: $f(w) = \langle C' \rangle$, where $C'(\langle u \rangle) = C(\langle w \# u \rangle)$

- Reduction: $f(w) = \langle C' \rangle$, where $C'(\langle u \rangle) = C(\langle w \# u \rangle)$ and C computes R_m
- YES maps to YES:
 - If $w \in L$, then $\Pr[M \text{ accepts } w] \neq 0$
 - Therefore, there exists $u \in \{0, 1\}^{T(|w|)}$ such that $w#u \in R$
 - Therefore, $C(\langle w # u \rangle) = 1$
 - Therefore, $C'(\langle u \rangle) = 1$, so C' is satisfiable \checkmark

- Reduction: $f(w) = \langle C' \rangle$, where $C'(\langle u \rangle) = C(\langle w \# u \rangle)$ and C computes R_m
- NO maps to NO:
 - Suppose C' is satisfiable, i.e., there exists $u \in \{0, 1\}^{T(|w|)}$ such that $C'(\langle u \rangle) = 1$
 - Then $C(\langle w # u \rangle) = 1$, so $w # u \in R$
 - Therefore, $\Pr[M \text{ accepts } w] \neq 0$
 - Therefore, $w \in L \checkmark$

- Reduction: $f(w) = \langle C' \rangle$, where $C'(\langle u \rangle) = C(\langle w \# u \rangle)$ and C computes R_m
- Polynomial-time computable:
 - 1. Compute $\langle C \rangle$. This takes poly(m) = poly(n) time \checkmark
 - 2. Plug in w#. This takes poly(n) time \checkmark

What else is NP-complete?

- We showed that CIRCUIT-SAT is NP-complete
- It turns out that a huge number of natural, interesting, and important languages are NP-complete!

• To prove NP-hardness, we can chain reductions together

Chaining reductions together

- Claim: Suppose L_{HARD} is NP-hard and there is a polynomial-time mapping reduction f from L_{HARD} to L_{NEW} . Then L_{NEW} is NP-hard
- **Proof:** Let *L* be any language in NP
- There is a polynomial-time mapping reduction g from L to L_{HARD}
- Reduction from *L* to L_{NEW} : h(w) = f(g(w))
- Poly-time computable \checkmark YES maps to YES \checkmark NO maps to NO \checkmark

Chaining reductions together

 Consequence: To prove that CLIQUE is NP-complete, there is no need to reduce from an arbitrary language in NP

- We "merely" need to do a reduction from the one language CIRCUIT-SAT
- That's nice, but it's still not clear how to reduce CIRCUIT-SAT to CLIQUE...
- Plan: We will reduce CIRCUIT-SAT to "3-SAT" and "3-SAT" to CLIQUE

k-CNF formulas

- Recall: A CNF formula is an "AND of ORs of literals"
- **Definition:** A *k*-CNF formula is a CNF formula in which every clause has at most *k* literals
- Example of a 3-CNF formula with two clauses:

$$\phi = (x_1 \lor \bar{x}_2 \lor \bar{x}_6) \land (x_5 \lor x_1 \lor x_2)$$

The Cook-Levin Theorem

• Define k-SAT = { $\langle \phi \rangle : \phi$ is a satisfiable k-CNF formula}

The Cook-Levin Theorem: 3-SAT is NP-complete

- **Proof:** We need to show two things.
- 1. We need to show 3-SAT \in NP. What is the certificate?
- 2. We need to show that 3-SAT is NP-hard. Reduction from CIRCUIT-SAT

Gate gadgets

• Define the following Boolean functions:

CHECK-NOT
$$(g, y) = \begin{cases} 1 & \text{if } g = \bar{y} \\ 0 & \text{otherwise} \end{cases}$$

CHECK-AND $(g, y, z) = \begin{cases} 1 & \text{if } g = (y \land z) \\ 0 & \text{otherwise} \end{cases}$
CHECK-OR $(g, y, z) = \begin{cases} 1 & \text{if } g = (y \lor z) \\ 0 & \text{otherwise} \end{cases}$

• Each can be represented by a 3-CNF formula. (Every function has a CNF representation!)

Reduction from CIRCUIT-SAT to 3-SAT

- Reduction: $f(\langle C \rangle) = \langle \phi \rangle$, where ϕ is a 3-CNF defined as follows
- Circuit C has variables x_1, x_2, \dots, x_n and AND/OR/NOT gates g_1, \dots, g_m
- Assume without loss of generality that g_m is the output gate
- Formula ϕ has n + m variables, which we denote $x_1, \ldots, x_n, g_1, \ldots, g_m$
- Note: In C, " g_i " is the name of a gate. In ϕ , " g_i " is the name of a variable

Reduction from CIRCUIT-SAT to 3-SAT

• For each AND/OR/NOT gate g_i in the circuit C, define a 3-CNF ϕ_i :

• Reduction produces $\phi := \phi_1 \land \phi_2 \land \dots \land \phi_m \land (g_m)$

Reduction example

 g_5

 g_3

 x_1

 g_1

 g_4

 x_2

 g_2

•
$$\phi_1 = \text{CHECK-NOT}(g_1, x_1) = (g_1 \lor x_1) \land (\bar{g}_1 \lor \bar{x}_1)$$

•
$$\phi_2 = \text{CHECK-NOT}(g_2, x_2) = (g_2 \lor x_2) \land (\bar{g}_2 \lor \bar{x}_2)$$

• $\phi_3 = \text{CHECK-AND}(g_3, x_1, g_2) = (\bar{g}_3 \lor x_1) \land (\bar{g}_3 \lor g_2) \land (g_3 \lor \bar{x}_1 \lor \bar{g}_2)$

•
$$\phi_4 = \text{CHECK-AND}(g_4, g_1, x_2) = (\bar{g}_4 \lor g_1) \land (\bar{g}_4 \lor x_2) \land (g_4 \lor \bar{g}_1 \lor \bar{x}_2)$$

• $\phi_5 = \text{CHECK-OR}(g_5, g_3, g_4) = (g_5 \lor \bar{g}_3) \land (g_5 \lor \bar{g}_4) \land (\bar{g}_5 \lor g_3 \lor g_4)$

$$\phi = (g_1 \lor x_1) \land (\bar{g}_1 \lor \bar{x}_1) \land (g_2 \lor x_2) \land (\bar{g}_2 \lor \bar{x}_2) \land (\bar{g}_3 \lor x_1) \land (\bar{g}_3 \lor g_2) \\ \land (g_3 \lor \bar{x}_1 \lor \bar{g}_2) \land (\bar{g}_4 \lor g_1) \land (\bar{g}_4 \lor x_2) \land (g_4 \lor \bar{g}_1 \lor \bar{x}_2) \land (g_5 \lor \bar{g}_3) \\ \land (g_5 \lor \bar{g}_4) \land (\bar{g}_5 \lor g_3 \lor g_4) \land (g_5)$$

YES maps to YES

- Claim: If the circuit C is satisfiable, then the 3-CNF formula ϕ is also satisfiable
- **Proof:** We are assuming there is some $x \in \{0, 1\}^n$ such that C(x) = 1
- For each i, assign to g_i (the variable) the value that g_i (the gate) outputs when we evaluate C on x