CMSC 28100

Introduction to
 Complexity Theory

Spring 2024
Instructor: William Hoza

k-CNF formulas

- A k-CNF formula is an AND of ORs of literals in which every clause has at most k literals
- Example of a 3-CNF formula with two clauses:

$$
\phi=\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{6}\right) \wedge\left(x_{5} \vee x_{1} \vee x_{2}\right)
$$

The Cook-Levin Theorem

- Define k-SAT $=\{\langle\phi\rangle: \phi$ is a satisfiable k-CNF formula $\}$

The Cook-Levin Theorem: 3-SAT is NP-complete

- Proof: 3-SAT \in NP (guess a satisfying assignment)
- To show that 3-SAT is NP-hard, we will reduce from CIRCUIT-SAT

Gate gadgets

- Define the following Boolean functions:

$$
\begin{gathered}
\operatorname{CHECK}-\operatorname{NOT}(g, y)=\left\{\begin{array}{l}
1 \text { if } g=\bar{y} \\
0 \\
\text { otherwise }
\end{array}\right. \\
\operatorname{CHECK}-\operatorname{AND}(g, y, z)= \begin{cases}1 & \text { if } g=(y \wedge z) \\
0 & \text { otherwise }\end{cases} \\
\operatorname{CHECK}-O R(g, y, z)= \begin{cases}1 & \text { if } g=(y \vee z) \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

- Each can be represented by a 3-CNF formula. (Every function has a CNF representation!)

Reduction from CIRCUIT-SAT to 3-SAT

- Reduction: $f(\langle C\rangle)=\langle\phi\rangle$, where ϕ is a 3-CNF defined as follows
- Circuit C has variables $x_{1}, x_{2}, \ldots, x_{n}$ and AND/OR/NOT gates g_{1}, \ldots, g_{m}
- Assume without loss of generality that g_{m} is the output gate
- Formula ϕ has $n+m$ variables, which we denote $x_{1}, \ldots, x_{n}, g_{1}, \ldots, g_{m}$
- Note: $\ln C$, " g_{i} " is the name of a gate. $\operatorname{In} \phi, " g_{i}$ " is the name of a variable

Reduction from CIRCUIT-SAT to 3-SAT

- For each AND/OR/NOT gate g_{i} in the circuit C, define a 3-CNF ϕ_{i} :

- Reduction produces $\phi:=\phi_{1} \wedge \phi_{2} \wedge \cdots \wedge \phi_{m} \wedge\left(g_{m}\right)$

Reduction example

YES maps to YES

- Claim: If the circuit C is satisfiable, then the 3-CNF formula ϕ is also satisfiable
- Proof: We are assuming there is some $x \in\{0,1\}^{n}$ such that $C(x)=1$
- For each i, assign to g_{i} (the variable) the value that g_{i} (the gate) outputs when we evaluate C on x
- We claim that $\phi\left(x_{1}, \ldots, x_{n}, g_{1}, \ldots, g_{m}\right)=1$. Indeed, each ϕ_{i} is satisfied because of the circuit structure, and $g_{m}=1$ because $C(x)=1$

NO maps to NO

- Claim: If C is not satisfiable, then ϕ is not satisfiable
- Proof sketch: We will prove the contrapositive: if ϕ is satisfiable, then C is satisfiable
- If $\phi\left(x_{1}, \ldots, x_{n}, g_{1}, \ldots, g_{m}\right)=1$, then we claim $C\left(x_{1}, \ldots, x_{n}\right)=1$
- Indeed, by induction on the circuit structure, g_{i} (the variable) must be equal to the value that g_{i} (the gate) outputs when we evaluate C on x. Furthermore, $g_{m}=1$

Reduction efficiency

- Reduction is computable in polynomial time
- For each gate in the circuit, we write down $O(1)$ clauses, and it is straightforward to compute what they are

Respond at PollEv.com/whoza or text "whoza" to 22333

Chaining reductions together

- 3-SAT is the starting point for many NP-hardness proofs
- We are finally ready to use the hardness of 3-SAT to prove that CLIQUE is NP-complete

CLIQUE is NP-complete

- Recall CLIQUE $=\{\langle G, k\rangle: G$ contains a k-clique $\}$

Theorem: CLIQUE is NP-complete

- Proof: We showed CLIQUE \in NP in a previous class
- To prove that CLIQUE is NP-hard, we will do a reduction from 3-SAT

Reduction from 3-SAT to CLIQUE

- Let ϕ be a 3-CNF formula (an instance of 3-SAT)
- Reduction: $f(\langle\phi\rangle)=\langle G, k\rangle$
- k is the number of clauses in ϕ
- G is a graph on $\leq 3 k$ vertices defined as follows

Reduction from 3-SAT to CLIQUE

- For each clause ($\ell_{1} \vee \ell_{2} \vee \ell_{3}$), create a "group" of three vertices labeled $\ell_{1}, \ell_{2}, \ell_{3}$
- (If the clause only has one or two literals, then only use one or two vertices)
- Put an edge $\{u, v\}$ if u and v are in different groups and u and v do not have contradictory labels (x_{i} and \bar{x}_{i})
- E.g., $\phi=\left(x_{1} \vee x_{2} \vee \bar{x}_{5}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{6}\right)$

$$
\wedge\left(x_{2} \vee x_{4} \vee \bar{x}_{3}\right) \wedge\left(x_{3} \vee \bar{x}_{6} \vee x_{1}\right)
$$

YES maps to YES

- Suppose ϕ is satisfiable, i.e., there exists a satisfying assignment x
- In each clause, at least one literal is satisfied by x
- Therefore, in each group, at least one vertex is "satisfied by x," i.e., it is labeled by a literal that is satisfied by x
- Let S be a set consisting of one satisfied vertex from each group
- Then S is a k-clique (vertices in S cannot have contradictory labels)

NO maps to NO

- Suppose G has a k-clique S
- Let x be an assignment that satisfies each vertex in S (this exists because no two vertices in S have contradictory labels)
- S cannot contain two vertices from a single group, and $|S|=k$, so S must contain one vertex from each group
- Therefore, x satisfies at least one literal in each clause, i.e., x satisfies ϕ

Poly-time computable

- Hopefully it is clear that the reduction $f(\langle\phi\rangle)=\langle G, k\rangle$ can be computed in polynomial time

NP-completeness is everywhere

- There are thousands of known NP-complete problems!
- These problems come from many different areas of study
- Logic, graph theory, number theory, scheduling, optimization, economics, physics, chemistry, biology, ...

Proving that L is NP-complete ("cheat sheet")

1. Prove that $L \in \mathrm{NP}$

- What is the certificate? How can you verify a purported certificate in polynomial time?

2. Prove that L is NP-hard

- Which NP-complete language $L_{\text {HARD }}$ are you reducing from?
- What is the reduction? Is it polynomial-time computable?
- YES maps to YES: Assume there is a certificate x showing $w \in L_{\text {HARD }}$. In terms of x, construct a certificate y showing that $f(w) \in L$.
- NO maps to NO: (Contrapositive) Assume there is a certificate y showing $f(w) \in L$. In terms of y, construct a certificate x showing that $w \in L_{\text {HARD }}$.

NP-complete languages stand or fall together

- If you design a poly-time algorithm for one NP-complete language, then $\mathrm{P}=\mathrm{NP}$, so all NP-complete languages can be decided in poly time!
- If you prove that one NP-complete language cannot be decided in poly time, then $\mathrm{P} \neq \mathrm{NP}$, so no NP-complete language can be decided in poly time!

Final exam cutoff point

- Final exam will be Wednesday, May 22 from 10am to noon in this room (STU 105)
- The exam is cumulative
- To prepare for the final exam, you only need to study the material up to this point (including problem set 7)

