CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

k-CNF formulas

* A k-CNF formula is an AND of ORs of literals in which every clause has

at most k literals

* Example of a 3-CNF formula with two clauses:

=(x; VX, VXe) N (xcVixiVx,)
1 2 6 5 1 2

The Cook-Levin Theorem

* Define k-SAT = {{(¢) : ¢ is a satisfiable k-CNF formula}

The Cook-Levin Theorem: 3-SAT is NP-complete

* Proof: 3-SAT € NP (guess a satisfying assignment)

* To show that 3-SAT is NP-hard, we will reduce from CIRCUIT-SAT

Gate gadgets

* Define the following Boolean functions:

1ifg=y
CHECK-NOT(g,vy) = _
(9,) {0 otherwise

CHECK-AND(g,y,2) = {1 19 = A2)
0 otherwise

CHECK-OR(g,y,z) = |+ 19 =0V2)
0 otherwise

e Each can be represented by a 3-CNF formula. (Every function has a CNF

representation!)

Reduction from CIRCUIT-SAT to 3-SAT

* Reduction: f({C)) = (¢), where ¢ is a 3-CNF defined as follows

* Circuit C has variables x4, x5, ..., x,, and AND/OR/NOT gates g1, ..., Im
* Assume without loss of generality that g, is the output gate

* Formula ¢ has n + m variables, which we denote x4, ..., X;;, 91, ---» 9m

* Note: In C, “g;” is the name of a gate. In ¢, “g;” is the name of a variable

Reduction from CIRCUIT-SAT to 3-SAT

* For each AND/OR/NQT gate g; in the circuit C, define a 3-CNF ¢;:

4 N

T

y

4 N

A

y VA

¢; = CHECK-NOT(g;,y)

_ /

¢; = CHECK-AND(g;,y, z)

_ /

4 N

A

y Z

¢; = CHECK-OR(g;,y, z)

_ /

* Reduction produces ¢p: = ¢ APy A Ay A (Gor)

Reduction example

* ¢, = CHECK-NOT(g4,x1) = (g1 Vx1) A (g1 V X1)
* ¢, = CHECK-NOT(gy, x3) = (g2 V x3) A (g2 V X3)

* ¢3 = CHECK-AND(g3,x1,92) = (g3 Vx1) A(gz3V g2) AN(g3 VX1 V G3)

* ¢, = CHECK-AND(gy4, 91,%2) = (G4 V g1) A(Ga V x2) AN(gs V g1 V X3)
* ¢5 = CHECK-OR(gs,93,94) = (g5 V g3) A(gs V G4) AN (g5 V g3 V g4)
=1 Vx)AN(@G1VX)AN(G2 VX)) AN(GaVX)NA(G3Vx)A(G3V gr)

AN(GzV X VG)ANGaVg) N(GaVx) N(GeV g1 VX)) A(gsV gs)
A(GsV gu) AN(gsV gsV gsa) A(9gs)

YES maps to YES

* Claim: If the circuit C is satisfiable, then the 3-CNF formula ¢ is also

satisfiable
* Proof: We are assuming there is some x € {0,1}" suchthat C(x) = 1

* For each i, assign to g; (the variable) the value that g; (the gate)

outputs when we evaluate C on x

* We claim that ¢ (x4, ..., X;, 91, ---» 9m) = 1. Indeed, each ¢; is satisfied

because of the circuit structure, and g,,, = 1 because C(x) =1

NO maps to NO

* Claim: If C is not satisfiable, then ¢ is not satisfiable

* Proof sketch: We will prove the contrapositive: if ¢ is satisfiable, then C is

satisfiable

e If p(xq, ..., X0, 91, ---» Gm) = 1, then we claim C(x4, ..., x,,) = 1

* Indeed, by induction on the circuit structure, g; (the variable) must be equal to the

value that g; (the gate) outputs when we evaluate C on x. Furthermore, g,,, = 1

Reduction efficiency

e Reduction is computable in polynomial time

* For each gate in the circuit, we write down O(1) clauses, and it is

straightforward to compute what they are

< Let (¢) = £({C)). Which of the following is false? >

A: C is satisfiable if and only if ¢ _

< e >< B: ()] < poly(I(C)) >
C: The number of clauses in ¢ is D: C and ¢ compute the same
O(size of C) Boolean function

Respond at PollEv.com/whoza or text “whoza” to 22333

10

CIRCUIT-SAT

3-SAT

NP-hard

w

NP-complete

w

NP

11

_m\\\\\\\\\m\mmu - ‘, '

= (A
s

Chaining reductions together

e 3-SAT is the starting point for many NP-hardness

proofs

* We are finally ready to use the hardness of 3-SAT to prove that CLIQUE is

NP-complete

12

CLIQUE is NP-complete

* Recall CLIQUE = {(G, k) : G contains a k-clique}

Theorem: CLIQUE is NP-complete

* Proof: We showed CLIQUE € NP in a previous class

* To prove that CLIQUE is NP-hard, we will do a reduction from 3-SAT

13

Reduction from 3-SAT to CLIQUE

* Let ¢ be a 3-CNF formula (an instance of 3-SAT)

 Reduction: f({¢)) = (G, k)

* k isthe number of clauses in ¢

e G is agraph on < 3k vertices defined as follows

14

Reduction from 3-SAT to CLIQUE

* For each clause (£, V £, V £3), createa * B8, ¢ = (x1Vxa VX5) A (X1 Vx4 V Xe)

“sroup” of three vertices labeled A Vg V) A(X3 VX6V X1)

fl, 32’ £3 / X4 X5 Xs \

e (If the clause only has one or two literals,
then only use one or two vertices) X1) X2
* Put an edge {u, v} ifuand v arein : # &
different groups and u and v do not & X3

have contradictory labels (x; and X;) \ s (%) (x /

15

YES maps to YES

* Suppose @ is satisfiable, i.e., there exists a satisfying assighment x
* In each clause, at least one literal is satisfied by x

* Therefore, in each group, at least one vertex is “satisfied by x,” i.e., it

is labeled by a literal that is satisfied by x
* Let S be a set consisting of one satisfied vertex from each group

* Then S is a k-clique (vertices in S cannot have contradictory labels)

16

NO maps to NO

e Suppose G has a k-clique S

* Let x be an assignment that satisfies each vertex in S (this exists because

no two vertices in S have contradictory labels)

S cannot contain two vertices from a single group, and |S| = k, so S must

contain one vertex from each group

* Therefore, x satisfies at least one literal in each clause, i.e., x satisfies ¢

17

Poly-time computable

* Hopefully it is clear that the reduction f({¢)) = (G, k) can be

computed in polynomial time

18

CIRCUIT-SAT

CLIQUE

3-SAT

NP-hard

¥
NP-complete
AS

19

NP-completeness is everywhere

* There are thousands of known NP-complete problems!

* These problems come from many different areas of study

* Logic, graph theory, number theory, scheduling, optimization, economics,

physics, chemistry, biology, ...

20

Proving that L is NP-complete (“cheat sheet”)

1. Prove that L € NP

* What is the certificate? How can you verify a purported certificate in polynomial time?

2. Prove that L is NP-hard

* Which NP-complete language Lyarp are you reducing from?
* What is the reduction? Is it polynomial-time computable?

* YES maps to YES: Assume there is a certificate x showing w € Lyagrp. In terms of x,

construct a certificate y showing that f(w) € L.

* NO maps to NO: (Contrapositive) Assume there is a certificate y showing f(w) € L. In terms

of y, construct a certificate x showing that w € Lyarp.

21

NP-complete languages stand or fall together

* If you design a poly-time algorithm for one NP-complete language, then

P = NP, so all NP-complete languages can be decided in poly time!

* If you prove that one NP-complete language cannot be decided in poly
time, then P #= NP, so no NP-complete language can be decided in poly

timel

22

Final exam cutoff point

* Final exam will be Wednesday, May 22 from 10am to noon in this

room (STU 105)
e The exam is cumulative

* To prepare for the final exam, you only need to study the material up

to this point (including problem set 7)

23

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: k-CNF formulas
	Slide 3: The Cook-Levin Theorem
	Slide 4: Gate gadgets
	Slide 5: Reduction from CIRCUIT‑SAT to 3‑SAT
	Slide 6: Reduction from CIRCUIT‑SAT to 3‑SAT
	Slide 7: Reduction example
	Slide 8: YES maps to YES
	Slide 9: NO maps to NO
	Slide 10: Reduction efficiency
	Slide 11
	Slide 12: Chaining reductions together
	Slide 13: CLIQUE is NP-complete
	Slide 14: Reduction from 3‑SAT to CLIQUE
	Slide 15: Reduction from 3‑SAT to CLIQUE
	Slide 16: YES maps to YES
	Slide 17: NO maps to NO
	Slide 18: Poly-time computable
	Slide 19
	Slide 20: NP-completeness is everywhere
	Slide 21: Proving that cap L is NP-complete (“cheat sheet”)
	Slide 22: NP-complete languages stand or fall together
	Slide 23: Final exam cutoff point

