
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

𝑘-CNF formulas

• A 𝑘-CNF formula is an AND of ORs of literals in which every clause has

at most 𝑘 literals

• Example of a 3-CNF formula with two clauses:

𝜙 = 𝑥1 ∨ ҧ𝑥2 ∨ ҧ𝑥6 ∧ 𝑥5 ∨ 𝑥1 ∨ 𝑥2

2

The Cook-Levin Theorem

• Define 𝑘-SAT = { 𝜙 ∶ 𝜙 is a satisfiable 𝑘-CNF formula}

• Proof: 3-SAT ∈ NP (guess a satisfying assignment)

• To show that 3-SAT is NP-hard, we will reduce from CIRCUIT-SAT

3

The Cook-Levin Theorem: 3-SAT is NP-complete

Gate gadgets

• Define the following Boolean functions:

CHECK-NOT 𝑔, 𝑦 = ቊ
1 if 𝑔 = ത𝑦
0 otherwise

CHECK-AND 𝑔, 𝑦, 𝑧 = ቊ
1 if 𝑔 = 𝑦 ∧ 𝑧
0 otherwise

CHECK-OR 𝑔, 𝑦, 𝑧 = ቊ
1 if 𝑔 = 𝑦 ∨ 𝑧
0 otherwise

• Each can be represented by a 3-CNF formula. (Every function has a CNF

representation!)
4

Reduction from CIRCUIT-SAT to 3-SAT

• Reduction: 𝑓 𝐶 = ⟨𝜙⟩, where 𝜙 is a 3-CNF defined as follows

• Circuit 𝐶 has variables 𝑥1, 𝑥2, … , 𝑥𝑛 and AND/OR/NOT gates 𝑔1, … , 𝑔𝑚

• Assume without loss of generality that 𝑔𝑚 is the output gate

• Formula 𝜙 has 𝑛 + 𝑚 variables, which we denote 𝑥1, … , 𝑥𝑛, 𝑔1, … , 𝑔𝑚

• Note: In 𝐶, “𝑔𝑖” is the name of a gate. In 𝜙, “𝑔𝑖” is the name of a variable

5

Reduction from CIRCUIT-SAT to 3-SAT

• For each AND/OR/NOT gate 𝑔𝑖 in the circuit 𝐶, define a 3-CNF 𝜙𝑖:

• Reduction produces 𝜙: = 𝜙1 ∧ 𝜙2 ∧ ⋯ ∧ 𝜙𝑚 ∧ 𝑔𝑚

6

¬

𝑦

𝑔𝑖

𝜙𝑖 = CHECK-NOT 𝑔𝑖 , 𝑦

∧

𝑦

𝑔𝑖

𝑧

𝜙𝑖 = CHECK-AND 𝑔𝑖 , 𝑦, 𝑧

∨

𝑦

𝑔𝑖

𝑧

𝜙𝑖 = CHECK-OR 𝑔𝑖 , 𝑦, 𝑧

Reduction example

• 𝜙1 = CHECK-NOT 𝑔1, 𝑥1 = 𝑔1 ∨ 𝑥1 ∧ (ҧ𝑔1 ∨ ҧ𝑥1)

• 𝜙2 = CHECK-NOT 𝑔2, 𝑥2 = 𝑔2 ∨ 𝑥2 ∧ ҧ𝑔2 ∨ ҧ𝑥2

• 𝜙3 = CHECK-AND 𝑔3, 𝑥1, 𝑔2 = ҧ𝑔3 ∨ 𝑥1 ∧ ҧ𝑔3 ∨ 𝑔2 ∧ 𝑔3 ∨ ҧ𝑥1 ∨ ҧ𝑔2

• 𝜙4 = CHECK-AND 𝑔4, 𝑔1, 𝑥2 = ҧ𝑔4 ∨ 𝑔1 ∧ ҧ𝑔4 ∨ 𝑥2 ∧ 𝑔4 ∨ ҧ𝑔1 ∨ ҧ𝑥2

• 𝜙5 = CHECK-OR 𝑔5, 𝑔3, 𝑔4 = 𝑔5 ∨ ҧ𝑔3 ∧ 𝑔5 ∨ ҧ𝑔4 ∧ ҧ𝑔5 ∨ 𝑔3 ∨ 𝑔4

7

∨

∧ ∧

𝑥1 𝑥2

¬ ¬

𝑔1 𝑔2

𝑔3 𝑔4

𝑔5

𝜙 = 𝑔1 ∨ 𝑥1 ∧ ҧ𝑔1 ∨ ҧ𝑥1 ∧ 𝑔2 ∨ 𝑥2 ∧ ҧ𝑔2 ∨ ҧ𝑥2 ∧ ҧ𝑔3 ∨ 𝑥1 ∧ ҧ𝑔3 ∨ 𝑔2

 ∧ 𝑔3 ∨ ҧ𝑥1 ∨ ҧ𝑔2 ∧ ҧ𝑔4 ∨ 𝑔1 ∧ ҧ𝑔4 ∨ 𝑥2 ∧ 𝑔4 ∨ ҧ𝑔1 ∨ ҧ𝑥2 ∧ 𝑔5 ∨ ҧ𝑔3

 ∧ 𝑔5 ∨ ҧ𝑔4 ∧ ҧ𝑔5 ∨ 𝑔3 ∨ 𝑔4 ∧ 𝑔5

YES maps to YES

• Claim: If the circuit 𝐶 is satisfiable, then the 3-CNF formula 𝜙 is also

satisfiable

• Proof: We are assuming there is some 𝑥 ∈ {0, 1}𝑛 such that 𝐶 𝑥 = 1

• For each 𝑖, assign to 𝑔𝑖 (the variable) the value that 𝑔𝑖 (the gate)

outputs when we evaluate 𝐶 on 𝑥

• We claim that 𝜙 𝑥1, … , 𝑥𝑛, 𝑔1, … , 𝑔𝑚 = 1. Indeed, each 𝜙𝑖 is satisfied

because of the circuit structure, and 𝑔𝑚 = 1 because 𝐶 𝑥 = 1

8

NO maps to NO

• Claim: If 𝐶 is not satisfiable, then 𝜙 is not satisfiable

• Proof sketch: We will prove the contrapositive: if 𝜙 is satisfiable, then 𝐶 is

satisfiable

• If 𝜙 𝑥1, … , 𝑥𝑛, 𝑔1, … , 𝑔𝑚 = 1, then we claim 𝐶 𝑥1, … , 𝑥𝑛 = 1

• Indeed, by induction on the circuit structure, 𝑔𝑖 (the variable) must be equal to the

value that 𝑔𝑖 (the gate) outputs when we evaluate 𝐶 on 𝑥. Furthermore, 𝑔𝑚 = 1

9

Reduction efficiency

• Reduction is computable in polynomial time

• For each gate in the circuit, we write down 𝑂 1 clauses, and it is

straightforward to compute what they are

10

Let 𝜙 = 𝑓 𝐶 . Which of the following is false?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: The number of clauses in 𝜙 is
Θ size of 𝐶

A: 𝐶 is satisfiable if and only if 𝜙
is satisfiable

B: 𝜙 ≤ poly 𝐶

D: 𝐶 and 𝜙 compute the same
Boolean function

11

P

NP

NP-complete

NP-hard

CIRCUIT-SAT

3-SAT

Chaining reductions together

• 3-SAT is the starting point for many NP-hardness

proofs

• We are finally ready to use the hardness of 3-SAT to prove that CLIQUE is

NP-complete

12

CLIQUE is NP-complete

• Recall CLIQUE = 𝐺, 𝑘 ∶ 𝐺 contains a 𝑘-clique

• Proof: We showed CLIQUE ∈ NP in a previous class

• To prove that CLIQUE is NP-hard, we will do a reduction from 3-SAT

13

Theorem: CLIQUE is NP-complete

Reduction from 3-SAT to CLIQUE

• Let 𝜙 be a 3-CNF formula (an instance of 3-SAT)

• Reduction: 𝑓 ⟨𝜙⟩ = ⟨𝐺, 𝑘⟩

• 𝑘 is the number of clauses in 𝜙

• 𝐺 is a graph on ≤ 3𝑘 vertices defined as follows

14

Reduction from 3-SAT to CLIQUE

• E.g., 𝜙 = 𝑥1 ∨ 𝑥2 ∨ ҧ𝑥5 ∧ ҧ𝑥1 ∨ 𝑥4 ∨ 𝑥6

∧ 𝑥2 ∨ 𝑥4 ∨ ҧ𝑥3 ∧ 𝑥3 ∨ ҧ𝑥6 ∨ 𝑥1

15

ҧ𝑥1

𝑥4

𝑥6

𝑥1 𝑥2 ҧ𝑥5

𝑥2

𝑥4

ҧ𝑥3

𝑥3 ҧ𝑥6 𝑥1

• For each clause ℓ1 ∨ ℓ2 ∨ ℓ3 , create a

“group” of three vertices labeled

ℓ1, ℓ2, ℓ3

• (If the clause only has one or two literals,

then only use one or two vertices)

• Put an edge {𝑢, 𝑣} if 𝑢 and 𝑣 are in

different groups and 𝑢 and 𝑣 do not

have contradictory labels (𝑥𝑖 and ҧ𝑥𝑖)

YES maps to YES

• Suppose 𝜙 is satisfiable, i.e., there exists a satisfying assignment 𝑥

• In each clause, at least one literal is satisfied by 𝑥

• Therefore, in each group, at least one vertex is “satisfied by 𝑥,” i.e., it

is labeled by a literal that is satisfied by 𝑥

• Let 𝑆 be a set consisting of one satisfied vertex from each group

• Then 𝑆 is a 𝑘-clique (vertices in 𝑆 cannot have contradictory labels)

16

NO maps to NO

• Suppose 𝐺 has a 𝑘-clique 𝑆

• Let 𝑥 be an assignment that satisfies each vertex in 𝑆 (this exists because

no two vertices in 𝑆 have contradictory labels)

• 𝑆 cannot contain two vertices from a single group, and 𝑆 = 𝑘, so 𝑆 must

contain one vertex from each group

• Therefore, 𝑥 satisfies at least one literal in each clause, i.e., 𝑥 satisfies 𝜙

17

Poly-time computable

• Hopefully it is clear that the reduction 𝑓 𝜙 = ⟨𝐺, 𝑘⟩ can be

computed in polynomial time

18

19

P

NP

NP-complete

NP-hard

CIRCUIT-SAT

3-SAT

CLIQUE

NP-completeness is everywhere

• There are thousands of known NP-complete problems!

• These problems come from many different areas of study

• Logic, graph theory, number theory, scheduling, optimization, economics,

physics, chemistry, biology, …

20

Proving that 𝐿 is NP-complete (“cheat sheet”)

1. Prove that 𝐿 ∈ NP

• What is the certificate? How can you verify a purported certificate in polynomial time?

2. Prove that 𝐿 is NP-hard

• Which NP-complete language 𝐿HARD are you reducing from?

• What is the reduction? Is it polynomial-time computable?

• YES maps to YES: Assume there is a certificate 𝑥 showing 𝑤 ∈ 𝐿HARD. In terms of 𝑥,

construct a certificate 𝑦 showing that 𝑓 𝑤 ∈ 𝐿.

• NO maps to NO: (Contrapositive) Assume there is a certificate 𝑦 showing 𝑓 𝑤 ∈ 𝐿. In terms

of 𝑦, construct a certificate 𝑥 showing that 𝑤 ∈ 𝐿HARD.
21

NP-complete languages stand or fall together

• If you design a poly-time algorithm for one NP-complete language, then

P = NP, so all NP-complete languages can be decided in poly time!

• If you prove that one NP-complete language cannot be decided in poly

time, then P ≠ NP, so no NP-complete language can be decided in poly

time!

22

Final exam cutoff point

• Final exam will be Wednesday, May 22 from 10am to noon in this

room (STU 105)

• The exam is cumulative

• To prepare for the final exam, you only need to study the material up

to this point (including problem set 7)

23

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: k-CNF formulas
	Slide 3: The Cook-Levin Theorem
	Slide 4: Gate gadgets
	Slide 5: Reduction from CIRCUIT‑SAT to 3‑SAT
	Slide 6: Reduction from CIRCUIT‑SAT to 3‑SAT
	Slide 7: Reduction example
	Slide 8: YES maps to YES
	Slide 9: NO maps to NO
	Slide 10: Reduction efficiency
	Slide 11
	Slide 12: Chaining reductions together
	Slide 13: CLIQUE is NP-complete
	Slide 14: Reduction from 3‑SAT to CLIQUE
	Slide 15: Reduction from 3‑SAT to CLIQUE
	Slide 16: YES maps to YES
	Slide 17: NO maps to NO
	Slide 18: Poly-time computable
	Slide 19
	Slide 20: NP-completeness is everywhere
	Slide 21: Proving that cap L is NP-complete (“cheat sheet”)
	Slide 22: NP-complete languages stand or fall together
	Slide 23: Final exam cutoff point

