CMSC 28100

Introduction to
 Complexity Theory

Spring 2024
Instructor: William Hoza

How to feel about intractability

- We have encountered several tractable problems in this course
- DECOMPOSABLE-INTO-SQUARES, CIRCUIT-VALUE, 2-COLORABLE, ...
- Conventional attitude: This is "good news"
- We have also identified many problems that are probably/definitely intractable
- HALT, BOUNDED-HALT, CIRCUIT-SAT, 3-SAT, CLIQUE, ...
- Conventional attitude: This is "bad news"
- Twist: Sometimes we are hoping that certain problems are intractable! ©

Cryptography

Secure communication

- How can Bob send a private message to Alice?
- E.g., credit card number
- It seems impossible, because Alice and Eve receive all the same information from Bob!

Alice

- A clever approach: Try to force Eve to solve an intractable problem

Public-key encryption

- Alice's advantage over Eve: Alice knows the private key and Eve doesn't

Public-key encryption scheme

- Definition: A simplified public-key encryption scheme is a triple (K, E, D), where:
$\cdot K \subseteq\{0,1\}^{*} \times\{0,1\}^{*}$ and $E, D:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$
- For every $w \in\{0,1\}^{*}$ and every $\left(k_{\text {pub }}, k_{\text {priv }}\right) \in K$, we have $D\left(k_{\text {priv }}, E\left(k_{\text {pub }}, w\right)\right)=w$
- E and D can be computed in polynomial time
- For every $\left(k_{\text {pub }}, k_{\text {priv }}\right) \in K$, we have $\left|k_{\text {pub }}\right|=\left|k_{\text {priv }}\right|$

If Eve is computationally unbounded

- Let's show that if Eve has unlimited computational power, then encryption is futile
- Claim: There exists a function $D_{\text {Eve }}:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for every message $w \in\{0,1\}^{*}$ and every pair $\left(k_{\text {pub }}, k_{\text {priv }}\right) \in K$, we have

$$
D_{\mathrm{Eve}}\left(k_{\mathrm{pub}}, E\left(k_{\mathrm{pub}}, w\right)\right)=w
$$

- Proof: If $E\left(k_{\mathrm{pub}}, w\right)=E\left(k_{\mathrm{pub}}, w^{\prime}\right)=y$, then $w=D\left(k_{\mathrm{priv}}, y\right)=w^{\prime}$

What if Eve is computationally bounded?

- Amazing fact: There are known public-key encryption schemes such that decrypting without the private key seems to be intractable!
- (*Better: There are schemes such that it is apparently intractable to "occasionally" "partially" decrypt without the private key. Making this precise is beyond the scope of our course)
- Example: "RSA"
- These amazing encryption schemes make our modern internet experience possible! Can we prove that they are secure?

Cryptography and P vs. NP

- Let (K, E, D) be a simplified public-key encryption scheme
- There is a function $D_{\text {Eve }}$ such that $D_{\text {Eve }}\left(k_{\text {pub }}, E\left(k_{\text {pub }}, w\right)\right)=w$
- Definition: We say that (K, E, D) is horribly insecure if the function $D_{\text {Eve }}$ can be computed in polynomial time

Theorem: If $\mathrm{P}=\mathrm{NP}$, then every simplified public-key encryption scheme is horribly insecure.

Cryptography and P vs. NP

Theorem: If $\mathrm{P}=\mathrm{NP}$, then every simplified public-key encryption scheme is horribly insecure.

- Proof: Let $L=\left\{\left\langle k_{\mathrm{pub}}, y, w\right\rangle\right.$: there exists z such that $\left.E\left(k_{\mathrm{pub}}, w z\right)=y\right\}$
- $L \in$ NP: the witness is z. (Since D is poly-time-computable, z is poly-size)
- We are assuming $\mathrm{P}=\mathrm{NP}$, so therefore $L \in \mathrm{P}$
- Therefore, Eve can construct the message bit-by-bit in polynomial time

Cryptography and P vs. NP

- Disclaimer: The preceding discussion of public-key encryption is simplified
- For example, a real encryption scheme should explain how to generate keys
- Nevertheless, the main message is accurate:
- If $\mathrm{P}=\mathrm{NP}$, then secure public-key encryption is impossible!

Cryptography and P vs. NP

- In fact, virtually all of theoretical cryptography relies on assumptions that are stronger than the assumption $\mathrm{P} \neq \mathrm{NP}$
- Maybe this makes you feel concerned about the uncertain foundations of computer security... ©:
- Or, maybe this makes you feel more confident that $P \neq N P$, considering how much effort people expend trying to break cryptosystems

Coping with intractability

Facing intractability

- Suppose you need to solve some problem (for your job, your business, your hobby project, your research, ...)
- You formulate your problem as a language L
- You find a proof (or some compelling evidence) that $L \notin \mathrm{P} \because$
- Undecidability, EXP-completeness, NP-completeness...
-What now? Is it time to give up?

Coping with intractability

- The fact that $L \notin \mathrm{P}$ does not necessarily mean that you cannot solve your problem
- There are, in fact, several approaches for coping with the fact that $L \notin \mathrm{P}$
- We will discuss a few approaches, without any proofs

Nontrivial exponential-time algorithms

- Even if L doesn't have a polynomial-time algorithm, it still might have a nontrivial algorithm

Theorem: There is an algorithm that determines whether a given n-variable 3 -CNF formula is satisfiable in time $O\left(1.308^{n}\right)$.

- If your inputs happen to be relatively small, then maybe an exponential time complexity is tolerable

Structured inputs

- Another approach: Maybe you can identify some additional structure in the instances you care about, beyond the definition of L
- Example: Initially, you think you need to solve SAT

$$
\text { SAT }=\{\langle\phi\rangle: \phi \text { is a satisfiable CNF formula }\}
$$

- SAT is NP-complete

Structured inputs

- However, after studying your situation more closely, you realize that your instances are all "Horn formulas"
- A Horn formula is a CNF formula with at most one positive literal per clause
- HORN-SAT $=\{\langle\phi\rangle: \phi$ is a satisfiable Horn formula $\}$
- Exercise: Prove that HORN-SAT $\in P$

SAT solvers

- Another approach: If your problem is in NP, you can try using a "SAT solver" (practical software for solving SAT)
- For example, many software package managers use SAT solvers to resolve dependencies
- Presumably, the reason this works is that there is some hidden structure in the SAT instances that come up in practice (think Horn formulas)

SAT solvers are not a panacea

- Note: The practical success of SAT solvers does not undermine the conjecture $P \neq N P$
- There are "hard instances" on which practical SAT solvers fail badly
- Cryptographers are very skilled at generating such instances!

Approximation algorithms

- The next approach that we will discuss for coping with intractability is approximation algorithms
- This approach only makes sense if you are trying to solve an optimization problem
- Example: the Knapsack problem

The Knapsack problem

- Given: Positive integers $w_{1}, \ldots, w_{k}, v_{1}, \ldots, v_{k}, B$
- Interpretation: There are k items
- Item i has weight w_{i} (in pounds) and value v_{i} (in dollars)
- We can carry up to B pounds of stuff in our knapsack
- Goal: Find a set $S \subseteq\{1,2, \ldots, k\}$ such that $\sum_{i \in S} v_{i}$ is as large as possible, subject to the constraint $\sum_{i \in S} w_{i} \leq B$

KNAPSACK is NP-complete

KNAPSACK $=\left\{\left\langle w_{1}, \ldots, w_{k}, v_{1}, \ldots, v_{k}, B, V\right\rangle:\right.$ there exists $S \subseteq\{1,2, \ldots, k\}$ such that $\Sigma_{i \in S} w_{i} \leq B$ and $\left.\Sigma_{i \in S} v_{i} \geq V\right\}$

Theorem: KNAPSACK is NP-complete

Approximation algorithms for Knapsack

- For every $w_{1}, \ldots, w_{k}, v_{1}, \ldots, v_{k}, B$, define

$$
\mathrm{OPT}=\max \left\{\sum_{i \in S} v_{i}: S \subseteq\{1, \ldots, k\} \text { and } \sum_{i \in S} w_{i} \leq B\right\}
$$

Theorem: There exists a poly-time algorithm such that given $w_{1}, \ldots, w_{k}, v_{1}, \ldots, v_{k}, B$, the algorithm outputs $S \subseteq\{1, \ldots, k\}$ such that:

- $\sum_{i \in S} w_{i} \leq B$
- $\sum_{i \in S} v_{i} \geq 0.99 \cdot$ OPT

Approximation algorithms for Knapsack

- For every $w_{1}, \ldots, w_{k}, v_{1}, \ldots, v_{k}, B$, define

$$
\mathrm{OPT}=\max \left\{\sum_{i \in S} v_{i}: S \subseteq\{1, \ldots, k\} \text { and } \sum_{i \in S} w_{i} \leq B\right\}
$$

Theorem: For every $\epsilon>0$, there exists a poly-time algorithm such that given $w_{1}, \ldots, w_{k}, v_{1}, \ldots, v_{k}, B$, the algorithm outputs $S \subseteq\{1, \ldots, k\}$ such that:

- $\sum_{i \in S} w_{i} \leq B$
- $\sum_{i \in S} v_{i} \geq(1-\epsilon) \cdot$ OPT

Approximation algorithms are not a panacea

- In some cases, approximation algorithms take some of the sting out of NP-completeness
- However, in other cases, approximation algorithms are unhelpful!

Inapproximability of the clique problem

- For a graph G, let $\omega(G)$ be the size of the largest clique in G

Theorem: Suppose there exists a poly-time algorithm such that given a graph $G=(V, E)$, the algorithm outputs a clique $S \subseteq V$ satisfying

$$
|S| \geq 0.01 \cdot \omega(G) . \text { Then } \mathrm{P}=\mathrm{NP}
$$

Inapproximability of the clique problem

- For a graph G, let $\omega(G)$ be the size of the largest clique in G

Theorem: Let $\epsilon>0$, and suppose there exists a poly-time algorithm such that given a graph $G=(V, E)$, the algorithm outputs a clique $S \subseteq V$ satisfying

$$
|S| \geq \epsilon \cdot \omega(G) \text {. Then } \mathrm{P}=\mathrm{NP} \text {. }
$$

Quantum computing

- Another approach for coping with intractability: Quantum Computing
- A quantum computer is a computational device that uses special features of quantum physics
- A detailed discussion of quantum computing is outside the scope of this course
- We will discuss only some key facts about quantum computing

Quantum computing

- Quantum computers are, to some extent, hypothetical
- So far, researchers have constructed rudimentary quantum computers
- There are huge ongoing efforts to build fully-functional quantum computers

Quantum complexity theory

- One can define a complexity class, BQP, consisting of all languages that could be decided in polynomial time by a fully-functional quantum computer
- The mathematical definition of BQP is beyond the scope of this course
- One can prove that $\mathrm{BPP} \subseteq \mathrm{BQP} \subseteq \mathrm{PSPACE}$

Shor's algorithm

- Recall FACTOR $=\{\langle N, K\rangle: N$ has a prime factor $p \leq K\}$
- Conjecture: FACTOR $\notin \mathrm{P}$

Theorem (Shor's algorithm): FACTOR \in BQP

- FACTOR is a likely counterexample to the extended Church-Turing thesis!

