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How to feel about intractability

• We have encountered several tractable problems in this course

• DECOMPOSABLE-INTO-SQUARES, CIRCUIT-VALUE, 2-COLORABLE, …

• Conventional attitude: This is “good news” 

• We have also identified many problems that are probably/definitely intractable

• HALT, BOUNDED-HALT, CIRCUIT-SAT, 3-SAT, CLIQUE, …

• Conventional attitude: This is “bad news” 

• Twist: Sometimes we are hoping that certain problems are intractable! 
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Cryptography
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Secure communication
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Alice Bob

Online
store

Customer

Public communication channel

Eve
• How can Bob send a private

message to Alice? 

• E.g., credit card number

• It seems impossible, because

Alice and Eve receive all the

same information from Bob!

• A clever approach: Try to force Eve to solve an intractable problem



Public-key encryption

• Alice’s advantage over Eve: Alice knows the private key and Eve doesn’t
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Public-key encryption scheme

• Definition: A simplified public-key encryption scheme is a triple (𝐾, 𝐸, 𝐷), 

where:

• 𝐾 ⊆ {0, 1}∗ × {0, 1}∗ and 𝐸, 𝐷: {0, 1}∗ × {0, 1}∗ → {0, 1}∗

• For every 𝑤 ∈ {0, 1}∗ and every 𝑘pub, 𝑘priv ∈ 𝐾, we have 𝐷 𝑘priv, 𝐸 𝑘pub, 𝑤 = 𝑤

• 𝐸 and 𝐷 can be computed in polynomial time

• For every 𝑘pub, 𝑘priv ∈ 𝐾, we have 𝑘pub = 𝑘priv
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If Eve is computationally unbounded

• Let’s show that if Eve has unlimited computational power, then encryption is 

futile

• Claim: There exists a function 𝐷Eve: {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that for 

every message 𝑤 ∈ {0, 1}∗ and every pair 𝑘pub, 𝑘priv ∈ 𝐾, we have

𝐷Eve 𝑘pub, 𝐸 𝑘pub, 𝑤 = 𝑤

• Proof: If 𝐸 𝑘pub, 𝑤 = 𝐸 𝑘pub, 𝑤′ = 𝑦, then 𝑤 = 𝐷 𝑘priv, 𝑦 = 𝑤′ 
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What if Eve is computationally bounded?

• Amazing fact: There are known public-key encryption schemes such 

that decrypting without the private key seems to be intractable! 

• (*Better: There are schemes such that it is apparently intractable to “occasionally” “partially” 

decrypt without the private key. Making this precise is beyond the scope of our course)

• Example: “RSA”

• These amazing encryption schemes make our modern internet 

experience possible! Can we prove that they are secure?
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Cryptography and P vs. NP

• Let 𝐾, 𝐸, 𝐷  be a simplified public-key encryption scheme

• There is a function 𝐷Eve such that 𝐷Eve 𝑘pub, 𝐸 𝑘pub, 𝑤 = 𝑤

• Definition: We say that 𝐾, 𝐸, 𝐷  is horribly insecure if the function 𝐷Eve 

can be computed in polynomial time
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Theorem: If P = NP, then every simplified public-key 

encryption scheme is horribly insecure.



Cryptography and P vs. NP

• Proof: Let 𝐿 = 𝑘pub, 𝑦, 𝑤 ∶ there exists 𝑧 such that 𝐸 𝑘pub, 𝑤𝑧 = 𝑦

• 𝐿 ∈ NP: the witness is 𝑧. (Since 𝐷 is poly-time-computable, 𝑧 is poly-size)

• We are assuming P = NP, so therefore 𝐿 ∈ P

• Therefore, Eve can construct the message bit-by-bit in polynomial time
10

Theorem: If P = NP, then every simplified public-key 

encryption scheme is horribly insecure.



Cryptography and P vs. NP

• Disclaimer: The preceding discussion of public-key encryption is simplified

• For example, a real encryption scheme should explain how to generate keys

• Nevertheless, the main message is accurate:

• If P = NP, then secure public-key encryption is impossible!
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Cryptography and P vs. NP

• In fact, virtually all of theoretical cryptography relies on assumptions that are 

stronger than the assumption P ≠ NP

• Maybe this makes you feel concerned about the uncertain foundations of 

computer security… 

• Or, maybe this makes you feel more confident that P ≠ NP, considering how 

much effort people expend trying to break cryptosystems 
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Coping with intractability
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Facing intractability

• Suppose you need to solve some problem (for your job, your 

business, your hobby project, your research, …)

• You formulate your problem as a language 𝐿

• You find a proof (or some compelling evidence) that 𝐿 ∉ P 

• Undecidability, EXP-completeness, NP-completeness…

• What now? Is it time to give up?
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Coping with intractability

• The fact that 𝐿 ∉ P does not necessarily mean that you cannot solve your 

problem

• There are, in fact, several approaches for coping with the fact that 𝐿 ∉ P

• We will discuss a few approaches, without any proofs
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Nontrivial exponential-time algorithms

• Even if 𝐿 doesn’t have a polynomial-time algorithm, it still might 

have a nontrivial algorithm

• If your inputs happen to be relatively small, then maybe an 

exponential time complexity is tolerable
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Theorem: There is an algorithm that determines whether a given 

𝑛-variable 3-CNF formula is satisfiable in time 𝑂 1.308𝑛 . 



Structured inputs

• Another approach: Maybe you can identify some additional structure 

in the instances you care about, beyond the definition of 𝐿

• Example: Initially, you think you need to solve SAT

SAT = 𝜙 ∶ 𝜙 is a satisfiable CNF formula

• SAT is NP-complete 
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Structured inputs

• However, after studying your situation more closely, you realize that your 

instances are all “Horn formulas”

• A Horn formula is a CNF formula with at most one positive literal per clause

• HORN-SAT = 𝜙 ∶ 𝜙 is a satisfiable Horn formula

• Exercise: Prove that HORN-SAT ∈ P
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SAT solvers

• Another approach: If your problem is in NP, you can try using a “SAT 

solver” (practical software for solving SAT)

• For example, many software package managers use SAT solvers to resolve 

dependencies

• Presumably, the reason this works is that there is some hidden structure 

in the SAT instances that come up in practice (think Horn formulas)
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SAT solvers are not a panacea

• Note: The practical success of SAT solvers does not undermine the 

conjecture P ≠ NP

• There are “hard instances” on which practical SAT solvers fail badly 

• Cryptographers are very skilled at generating such instances!
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Approximation algorithms

• The next approach that we will discuss for coping with intractability is 

approximation algorithms

• This approach only makes sense if you are trying to solve an 

optimization problem

• Example: the Knapsack problem
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The Knapsack problem

• Given: Positive integers 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵

• Interpretation: There are 𝑘 items

• Item 𝑖 has weight 𝑤𝑖  (in pounds) and value 𝑣𝑖 (in dollars)

• We can carry up to 𝐵 pounds of stuff in our knapsack

• Goal: Find a set 𝑆 ⊆ {1, 2, … , 𝑘} such that σ𝑖∈𝑆 𝑣𝑖 is as large as 

possible, subject to the constraint σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵
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KNAPSACK is NP-complete

KNAPSACK = { 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, 𝑉 ∶ there exists 𝑆 ⊆ {1, 2, … , 𝑘} 

 such that Σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵 and Σ𝑖∈𝑆 𝑣𝑖 ≥ 𝑉}
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Theorem: KNAPSACK is NP-complete



Approximation algorithms for Knapsack

• For every 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, define

OPT = max 

𝑖∈𝑆

𝑣𝑖 ∶ 𝑆 ⊆ {1, … , 𝑘} and 

𝑖∈𝑆

𝑤𝑖 ≤ 𝐵
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Theorem: There exists a poly-time algorithm such that given 

𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, the algorithm outputs 𝑆 ⊆ {1, … , 𝑘} such that:

• σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵

• σ𝑖∈𝑆 𝑣𝑖 ≥ 0.99 ⋅ OPT



Approximation algorithms for Knapsack

• For every 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, define

OPT = max 

𝑖∈𝑆

𝑣𝑖 ∶ 𝑆 ⊆ {1, … , 𝑘} and 

𝑖∈𝑆

𝑤𝑖 ≤ 𝐵
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Theorem: For every 𝜖 > 0, there exists a poly-time algorithm such that given 

𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, the algorithm outputs 𝑆 ⊆ {1, … , 𝑘} such that:

• σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵

• σ𝑖∈𝑆 𝑣𝑖 ≥ 1 − ϵ ⋅ OPT



Approximation algorithms are not a panacea

• In some cases, approximation algorithms take some of the sting out 

of NP-completeness

• However, in other cases, approximation algorithms are unhelpful!
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Inapproximability of the clique problem

• For a graph 𝐺, let 𝜔 𝐺  be the size of the largest clique in 𝐺
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Theorem: Suppose there exists a poly-time algorithm such that

given a graph 𝐺 = 𝑉, 𝐸 , the algorithm outputs a clique 𝑆 ⊆ 𝑉 satisfying

𝑆 ≥ 0.01 ⋅ 𝜔 𝐺 . Then P = NP.



Inapproximability of the clique problem

• For a graph 𝐺, let 𝜔 𝐺  be the size of the largest clique in 𝐺
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Theorem: Let 𝜖 > 0, and suppose there exists a poly-time algorithm such that

given a graph 𝐺 = 𝑉, 𝐸 , the algorithm outputs a clique 𝑆 ⊆ 𝑉 satisfying

𝑆 ≥ 𝜖 ⋅ 𝜔 𝐺 . Then P = NP.



Quantum computing

• Another approach for coping with intractability: Quantum Computing

• A quantum computer is a computational device that uses special 

features of quantum physics

• A detailed discussion of quantum computing is outside the scope of 

this course

• We will discuss only some key facts about quantum computing
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Quantum computing

• Quantum computers are, to some extent, hypothetical

• So far, researchers have constructed rudimentary quantum computers

• There are huge ongoing efforts to build fully-functional quantum 

computers
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Quantum complexity theory

• One can define a complexity class, BQP, consisting of all languages that 

could be decided in polynomial time by a fully-functional quantum 

computer

• The mathematical definition of BQP is beyond the scope of this course

• One can prove that BPP ⊆ BQP ⊆ PSPACE
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Shor’s algorithm

• Recall FACTOR = 𝑁, 𝐾 ∶ 𝑁 has a prime factor 𝑝 ≤ 𝐾

• Conjecture: FACTOR ∉ P

• FACTOR is a likely counterexample to the extended Church-Turing thesis!
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Theorem (Shor’s algorithm): FACTOR ∈ BQP
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