
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

How to feel about intractability

• We have encountered several tractable problems in this course

• DECOMPOSABLE-INTO-SQUARES, CIRCUIT-VALUE, 2-COLORABLE, …

• Conventional attitude: This is “good news”

• We have also identified many problems that are probably/definitely intractable

• HALT, BOUNDED-HALT, CIRCUIT-SAT, 3-SAT, CLIQUE, …

• Conventional attitude: This is “bad news”

• Twist: Sometimes we are hoping that certain problems are intractable!

2

Cryptography

3

Secure communication

4

Alice Bob

Online
store

Customer

Public communication channel

Eve
• How can Bob send a private

message to Alice?

• E.g., credit card number

• It seems impossible, because

Alice and Eve receive all the

same information from Bob!

• A clever approach: Try to force Eve to solve an intractable problem

Public-key encryption

• Alice’s advantage over Eve: Alice knows the private key and Eve doesn’t

5

Public-key encryption scheme

• Definition: A simplified public-key encryption scheme is a triple (𝐾, 𝐸, 𝐷),

where:

• 𝐾 ⊆ {0, 1}∗ × {0, 1}∗ and 𝐸, 𝐷: {0, 1}∗ × {0, 1}∗ → {0, 1}∗

• For every 𝑤 ∈ {0, 1}∗ and every 𝑘pub, 𝑘priv ∈ 𝐾, we have 𝐷 𝑘priv, 𝐸 𝑘pub, 𝑤 = 𝑤

• 𝐸 and 𝐷 can be computed in polynomial time

• For every 𝑘pub, 𝑘priv ∈ 𝐾, we have 𝑘pub = 𝑘priv

6

“keys”

“encrypt”

“decrypt”

If Eve is computationally unbounded

• Let’s show that if Eve has unlimited computational power, then encryption is

futile

• Claim: There exists a function 𝐷Eve: {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that for

every message 𝑤 ∈ {0, 1}∗ and every pair 𝑘pub, 𝑘priv ∈ 𝐾, we have

𝐷Eve 𝑘pub, 𝐸 𝑘pub, 𝑤 = 𝑤

• Proof: If 𝐸 𝑘pub, 𝑤 = 𝐸 𝑘pub, 𝑤′ = 𝑦, then 𝑤 = 𝐷 𝑘priv, 𝑦 = 𝑤′

7

What if Eve is computationally bounded?

• Amazing fact: There are known public-key encryption schemes such

that decrypting without the private key seems to be intractable!

• (*Better: There are schemes such that it is apparently intractable to “occasionally” “partially”

decrypt without the private key. Making this precise is beyond the scope of our course)

• Example: “RSA”

• These amazing encryption schemes make our modern internet

experience possible! Can we prove that they are secure?

8

Cryptography and P vs. NP

• Let 𝐾, 𝐸, 𝐷 be a simplified public-key encryption scheme

• There is a function 𝐷Eve such that 𝐷Eve 𝑘pub, 𝐸 𝑘pub, 𝑤 = 𝑤

• Definition: We say that 𝐾, 𝐸, 𝐷 is horribly insecure if the function 𝐷Eve

can be computed in polynomial time

9

Theorem: If P = NP, then every simplified public-key

encryption scheme is horribly insecure.

Cryptography and P vs. NP

• Proof: Let 𝐿 = 𝑘pub, 𝑦, 𝑤 ∶ there exists 𝑧 such that 𝐸 𝑘pub, 𝑤𝑧 = 𝑦

• 𝐿 ∈ NP: the witness is 𝑧. (Since 𝐷 is poly-time-computable, 𝑧 is poly-size)

• We are assuming P = NP, so therefore 𝐿 ∈ P

• Therefore, Eve can construct the message bit-by-bit in polynomial time
10

Theorem: If P = NP, then every simplified public-key

encryption scheme is horribly insecure.

Cryptography and P vs. NP

• Disclaimer: The preceding discussion of public-key encryption is simplified

• For example, a real encryption scheme should explain how to generate keys

• Nevertheless, the main message is accurate:

• If P = NP, then secure public-key encryption is impossible!

11

Cryptography and P vs. NP

• In fact, virtually all of theoretical cryptography relies on assumptions that are

stronger than the assumption P ≠ NP

• Maybe this makes you feel concerned about the uncertain foundations of

computer security…

• Or, maybe this makes you feel more confident that P ≠ NP, considering how

much effort people expend trying to break cryptosystems

12

Coping with intractability

13

Facing intractability

• Suppose you need to solve some problem (for your job, your

business, your hobby project, your research, …)

• You formulate your problem as a language 𝐿

• You find a proof (or some compelling evidence) that 𝐿 ∉ P

• Undecidability, EXP-completeness, NP-completeness…

• What now? Is it time to give up?

14

Coping with intractability

• The fact that 𝐿 ∉ P does not necessarily mean that you cannot solve your

problem

• There are, in fact, several approaches for coping with the fact that 𝐿 ∉ P

• We will discuss a few approaches, without any proofs

15

Nontrivial exponential-time algorithms

• Even if 𝐿 doesn’t have a polynomial-time algorithm, it still might

have a nontrivial algorithm

• If your inputs happen to be relatively small, then maybe an

exponential time complexity is tolerable

16

Theorem: There is an algorithm that determines whether a given

𝑛-variable 3-CNF formula is satisfiable in time 𝑂 1.308𝑛 .

Structured inputs

• Another approach: Maybe you can identify some additional structure

in the instances you care about, beyond the definition of 𝐿

• Example: Initially, you think you need to solve SAT

SAT = 𝜙 ∶ 𝜙 is a satisfiable CNF formula

• SAT is NP-complete

17

Structured inputs

• However, after studying your situation more closely, you realize that your

instances are all “Horn formulas”

• A Horn formula is a CNF formula with at most one positive literal per clause

• HORN-SAT = 𝜙 ∶ 𝜙 is a satisfiable Horn formula

• Exercise: Prove that HORN-SAT ∈ P

18

SAT solvers

• Another approach: If your problem is in NP, you can try using a “SAT

solver” (practical software for solving SAT)

• For example, many software package managers use SAT solvers to resolve

dependencies

• Presumably, the reason this works is that there is some hidden structure

in the SAT instances that come up in practice (think Horn formulas)

19

SAT solvers are not a panacea

• Note: The practical success of SAT solvers does not undermine the

conjecture P ≠ NP

• There are “hard instances” on which practical SAT solvers fail badly

• Cryptographers are very skilled at generating such instances!

20

Approximation algorithms

• The next approach that we will discuss for coping with intractability is

approximation algorithms

• This approach only makes sense if you are trying to solve an

optimization problem

• Example: the Knapsack problem

21

The Knapsack problem

• Given: Positive integers 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵

• Interpretation: There are 𝑘 items

• Item 𝑖 has weight 𝑤𝑖 (in pounds) and value 𝑣𝑖 (in dollars)

• We can carry up to 𝐵 pounds of stuff in our knapsack

• Goal: Find a set 𝑆 ⊆ {1, 2, … , 𝑘} such that σ𝑖∈𝑆 𝑣𝑖 is as large as

possible, subject to the constraint σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵

22

KNAPSACK is NP-complete

KNAPSACK = { 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, 𝑉 ∶ there exists 𝑆 ⊆ {1, 2, … , 𝑘}

 such that Σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵 and Σ𝑖∈𝑆 𝑣𝑖 ≥ 𝑉}

23

Theorem: KNAPSACK is NP-complete

Approximation algorithms for Knapsack

• For every 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, define

OPT = max

𝑖∈𝑆

𝑣𝑖 ∶ 𝑆 ⊆ {1, … , 𝑘} and

𝑖∈𝑆

𝑤𝑖 ≤ 𝐵

24

Theorem: There exists a poly-time algorithm such that given

𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, the algorithm outputs 𝑆 ⊆ {1, … , 𝑘} such that:

• σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵

• σ𝑖∈𝑆 𝑣𝑖 ≥ 0.99 ⋅ OPT

Approximation algorithms for Knapsack

• For every 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, define

OPT = max

𝑖∈𝑆

𝑣𝑖 ∶ 𝑆 ⊆ {1, … , 𝑘} and

𝑖∈𝑆

𝑤𝑖 ≤ 𝐵

25

Theorem: For every 𝜖 > 0, there exists a poly-time algorithm such that given

𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, the algorithm outputs 𝑆 ⊆ {1, … , 𝑘} such that:

• σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵

• σ𝑖∈𝑆 𝑣𝑖 ≥ 1 − ϵ ⋅ OPT

Approximation algorithms are not a panacea

• In some cases, approximation algorithms take some of the sting out

of NP-completeness

• However, in other cases, approximation algorithms are unhelpful!

26

Inapproximability of the clique problem

• For a graph 𝐺, let 𝜔 𝐺 be the size of the largest clique in 𝐺

27

Theorem: Suppose there exists a poly-time algorithm such that

given a graph 𝐺 = 𝑉, 𝐸 , the algorithm outputs a clique 𝑆 ⊆ 𝑉 satisfying

𝑆 ≥ 0.01 ⋅ 𝜔 𝐺 . Then P = NP.

Inapproximability of the clique problem

• For a graph 𝐺, let 𝜔 𝐺 be the size of the largest clique in 𝐺

28

Theorem: Let 𝜖 > 0, and suppose there exists a poly-time algorithm such that

given a graph 𝐺 = 𝑉, 𝐸 , the algorithm outputs a clique 𝑆 ⊆ 𝑉 satisfying

𝑆 ≥ 𝜖 ⋅ 𝜔 𝐺 . Then P = NP.

Quantum computing

• Another approach for coping with intractability: Quantum Computing

• A quantum computer is a computational device that uses special

features of quantum physics

• A detailed discussion of quantum computing is outside the scope of

this course

• We will discuss only some key facts about quantum computing

29

Quantum computing

• Quantum computers are, to some extent, hypothetical

• So far, researchers have constructed rudimentary quantum computers

• There are huge ongoing efforts to build fully-functional quantum

computers

30

Quantum complexity theory

• One can define a complexity class, BQP, consisting of all languages that

could be decided in polynomial time by a fully-functional quantum

computer

• The mathematical definition of BQP is beyond the scope of this course

• One can prove that BPP ⊆ BQP ⊆ PSPACE

31

Shor’s algorithm

• Recall FACTOR = 𝑁, 𝐾 ∶ 𝑁 has a prime factor 𝑝 ≤ 𝐾

• Conjecture: FACTOR ∉ P

• FACTOR is a likely counterexample to the extended Church-Turing thesis!

32

Theorem (Shor’s algorithm): FACTOR ∈ BQP

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: How to feel about intractability
	Slide 3: Cryptography
	Slide 4: Secure communication
	Slide 5: Public-key encryption
	Slide 6: Public-key encryption scheme
	Slide 7: If Eve is computationally unbounded
	Slide 8: What if Eve is computationally bounded?
	Slide 9: Cryptography and P vs. NP
	Slide 10: Cryptography and P vs. NP
	Slide 11: Cryptography and P vs. NP
	Slide 12: Cryptography and P vs. NP
	Slide 13: Coping with intractability
	Slide 14: Facing intractability
	Slide 15: Coping with intractability
	Slide 16: Nontrivial exponential-time algorithms
	Slide 17: Structured inputs
	Slide 18: Structured inputs
	Slide 19: SAT solvers
	Slide 20: SAT solvers are not a panacea
	Slide 21: Approximation algorithms
	Slide 22: The Knapsack problem
	Slide 23: KNAPSACK is NP-complete
	Slide 24: Approximation algorithms for Knapsack
	Slide 25: Approximation algorithms for Knapsack
	Slide 26: Approximation algorithms are not a panacea
	Slide 27: Inapproximability of the clique problem
	Slide 28: Inapproximability of the clique problem
	Slide 29: Quantum computing
	Slide 30: Quantum computing
	Slide 31: Quantum complexity theory
	Slide 32: Shor’s algorithm

