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Quantum complexity theory

* One can define a complexity class, BQP, consisting of all languages that
could be decided in polynomial time by a fully-functional quantum

computer

* The mathematical definition of BQP is beyond the scope of this course

* One can prove that BPP € BQP € PSPACE



Shor’s algorithm

* Recall FACTOR = {(N, K) : N has a prime factor p < K}

* Conjecture: FACTOR ¢ P

Theorem (Shor’s algorithm): FACTOR € BQP

* FACTOR is a likely counterexample to the extended Church-Turing thesis!



Quantum computing and NP-completeness

e Recall: FACTOR € NP (guess the factor)
e Shor’s algorithm raises the question: Is FACTOR NP-complete?

* If yes, then NP € BQP, meaning that all NP-complete problems could be

solved in polynomial time on a fully-functional quantum computer! (&



Complexity of factoring integers

* In most cases, if a language L is in NP, then we can either prove L € P

or we can prove that L is NP-complete
« FACTOR is one of the rare exceptions to this rule

* Conjecture: FACTOR is neither in P nor NP-complete!
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Complexity of factoring integers

* To explain why we expect that FACTOR is not NP-complete, we now

introduce another complexity class, called coNP

* The definition of cONP is the same as the definition of NP, except

that we swap the roles of “yes” and “no”



The complexity class coNP

e Let L € X" be a language

e Definition: L € coNP if there exists a randomized polynomial-time
Turing machine M such that for every w € X*:

* Ifw € L, then Pr[M acceptsw] =1

* Ifw & L, then Pr[M accepts w] # 1



The complexity class coNP

* Let L be alanguage, L € X*,andletL = X*\ L
e Fact: L € NP if and only if L € coNP

* CONP is the set of complements of languages in NP

* (This is why it is called “coNP”)



The complexity class coNP

* Example: We say that a Boolean formula is unsatisfiable if it is not

satisfiable

* Let 3-UNSAT = {{¢) : ¢ is an unsatisfiable 3-CNF formula}

* Then 3-UNSAT € coNP, because a satisfying assignment is a
certificate showing that ¢ & 3-UNSAT
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FACTOR € coNP

 FACTOR = {(N, K) : N has a prime factor p such thatp < K}
* Claim: FACTOR € coNP

* Proof: The certificate for non-membership is the full prime factorization of N,
i.e., (D1, ., P, €1, ---, ;) Where N = 'pfl JRITE p,i" and p;’s are distinct primes
* Since p; = 2, we have k < log N, so the certificate has poly size

* Verification: Confirm that each p; is prime (PRIMES € P); confirm that N

really is equal to ], pl.ei ; and confirm that the smallest p; is bigger than K
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The complexity class NP N coNP

* We have shown that FACTOR € NP and FACTOR € coNP
e FACTOR € NP N coNP

L. € NP N coNP means that for every instance, there is a certificate:
a certificate of membership for YES instances and a certificate of

non-membership for NO instances
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The NP vs. coNP problem

Conjecture: NP # coNP

* The statement NP = coNP would mean that for every unsatisfiable
circuit, there is some short certificate | could present to prove to you

that a circuit is unsatisfiable

* That sounds counterintuitive! But we don’t really know
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NP-completeness and NP N coNP

* Fact: Assuming NP # coNP, there are no NP-complete languages

in NP N coNP
* (Proof: Exercise)

* This gives us evidence that FACTOR is not NP-complete
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Quantum computing is not a panacea

« FACTOR € BQP, but FACTOR is probably not NP-complete
* In fact, it is conjectured that NP € BQP

* In this case, even a fully-functional qguantum computer would not be

able to solve NP-complete problems in polynomial time

* Even quantum computers have limitations
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Limitations of quantum computers

 We have developed several techniques for identifying hardness

* Undecidability
 EXP-completeness

 NP-completeness

* Those techniques are all still applicable even in a world with fully-

functional quantum computers!

* Complexity theory is intended to be “future-proof” / “timeless”
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Complexity theory:

The study of computational resources



Computational resources: Fuel for algorithms

o L)
« °° e 80
90
| Lo o ©® ’,‘ =
e © -
‘_/LP o of

TIME SPACE RANDOMNESS

iy i

COMMUNICATION QUANTUM PHYSICS PARALLELISM

23



Sublinear-space computation

* Can we solve any interesting problems using o(n) space?

* The one-tape Turing machine is the not the right model of

computation for studying sublinear-space algorithms
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Sublinear-space computation

Read-only input tape = O

Read-write work tape = O
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The complexity class SPACE(S)

e Let L be a language and let S: N — N be a function (space bound)

* Definition: L € SPACE(S) if there is a two-tape Turing machine M such that:
* M decides L
* M never modifies the symbols written on tape 1
* Whenever M reads a blank symbol U on tape 1, the tape 1 head moves to the left

* We have Sy,(n) = O(S(n)), where S;,(n) is the maximum i such that the tape 2 head

visits cell i during the computation of M on w for some w € X"
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The complexity class L

» Exercise: PSPACE = U, SPACE(n*)
* Definition: L = SPACE(logn)

* L is the set of languages that can be decided in logarithmic space
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BALANCED € L

« BALANCED = {x € {0,1}" : x has equal numbers of zeroes and ones}
* Claim: BALANCED € L

* Proof sketch: Given x € {0, 1}":

e Count the number of ones in x
These counters are only log n bits each!
e Count the number of zeroes in x

* Check whether the two counts are equal
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LESP

e Exercise: Show that L € P

* (Similar to the proof that PSPACE € EXP)
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The L vs. P problem

 We expect that L # P, but we don’t know how to prove it

. = P would mean that every efficient algorithm can be modified so

that it only uses a tiny amount of work space
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LLvs. Pvs. NP vs. PSPACE

L € P < NP € PSPACE
* What we expect: All of these containments are strict

* What we can prove: At least one of these containments is strict:

Theorem: L. # PSPACE
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Nondeterministic log space computation

 We define NL to be the class of languages that can be decided by a

nondeterministic log-space Turing machine

* Equivalently: NL is the class of languages for which membership can
be verified in logarithmic space — with the extra requirement that the

verifier can only read the certificate one time from left to right
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Two surprises about NL

* We expect that P # NP. However, in the space complexity world...

Savitch’s Theorem: NL € SPACE(log? n)

* We expect that NP # coNP. However, in the space complexity world...

Immerman-Szelepcsényi Theorem: NL = coNL
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