CMSC 28100

Introduction to Complexity Theory

Spring 2024 Instructor: William Hoza

Quantum complexity theory

- One can define a complexity class, BQP, consisting of all languages that could be decided in polynomial time by a fully-functional quantum computer
- The mathematical definition of BQP is beyond the scope of this course
- One can prove that $BPP \subseteq BQP \subseteq PSPACE$

Shor's algorithm

- Recall FACTOR = { $\langle N, K \rangle$: N has a prime factor $p \leq K$ }
- **Conjecture:** FACTOR \notin P

Theorem (Shor's algorithm): FACTOR ∈ BQP

• FACTOR is a likely counterexample to the extended Church-Turing thesis!

Quantum computing and NP-completeness

- Recall: FACTOR \in NP (guess the factor)
- Shor's algorithm raises the question: Is FACTOR NP-complete?
- If yes, then NP \subseteq BQP, meaning that all NP-complete problems could be solved in polynomial time on a fully-functional quantum computer! $\textcircled{\begin{aligned} \label{eq:solved} \label{eq:solved} \end{aligned} }$

Complexity of factoring integers

- In most cases, if a language L is in NP, then we can either prove $L \in P$ or we can prove that L is NP-complete
- FACTOR is one of the rare exceptions to this rule
- **Conjecture:** FACTOR is neither in P nor NP-complete!

Complexity of factoring integers

- To explain why we expect that FACTOR is not NP-complete, we now introduce another complexity class, called coNP
- The definition of coNP is the same as the definition of NP, except that we swap the roles of "yes" and "no"

The complexity class coNP

- Let $L \subseteq \Sigma^*$ be a language
- **Definition:** $L \in coNP$ if there exists a randomized polynomial-time

Turing machine *M* such that for every $w \in \Sigma^*$:

- If $w \in L$, then $\Pr[M \text{ accepts } w] = 1$
- If $w \notin L$, then $\Pr[M \text{ accepts } w] \neq 1$

The complexity class coNP

- Let L be a language, $L \subseteq \Sigma^*$, and let $\overline{L} = \Sigma^* \setminus L$
- Fact: $L \in NP$ if and only if $\overline{L} \in coNP$
- coNP is the set of complements of languages in NP
- (This is why it is called "coNP")

The complexity class coNP

- Example: We say that a Boolean formula is unsatisfiable if it is not satisfiable
- Let 3-UNSAT = { $\langle \phi \rangle : \phi$ is an unsatisfiable 3-CNF formula}
- Then 3-UNSAT \in coNP, because a satisfying assignment is a certificate showing that $\phi \notin$ 3-UNSAT

FACTOR \in coNP

- FACTOR = { $\langle N, K \rangle$: *N* has a prime factor *p* such that $p \le K$ }
- **Claim:** FACTOR \in coNP
- **Proof:** The certificate for non-membership is the full prime factorization of N, i.e., $\langle p_1, ..., p_k, e_1, ..., e_k \rangle$ where $N = p_1^{e_1} \cdot \cdots \cdot p_k^{e_k}$ and p_i 's are distinct primes
- Since $p_i \ge 2$, we have $k \le \log N$, so the certificate has poly size
- Verification: Confirm that each p_i is prime (PRIMES \in P); confirm that N really is equal to $\prod_i p_i^{e_i}$; and confirm that the smallest p_i is bigger than K

The complexity class NP \cap coNP

- We have shown that FACTOR \in NP and FACTOR \in coNP
- FACTOR \in NP \cap coNP
- L ∈ NP ∩ coNP means that for every instance, there is a certificate: a certificate of membership for YES instances and a certificate of non-membership for NO instances

The NP vs. coNP problem

Conjecture: NP \neq coNP

- The statement NP = coNP would mean that for every unsatisfiable circuit, there is some short certificate I could present to prove to you that a circuit is unsatisfiable
- That sounds counterintuitive! But we don't really know

NP-completeness and NP \cap coNP

- Fact: Assuming NP \neq coNP, there are no NP-complete languages in NP \cap coNP
- (Proof: Exercise)
- This gives us evidence that FACTOR is not NP-complete

Quantum computing is not a panacea

- FACTOR ∈ BQP, but FACTOR is probably not NP-complete
- In fact, it is conjectured that NP \nsubseteq BQP
- In this case, even a fully-functional quantum computer would not be able to solve NP-complete problems in polynomial time
- Even quantum computers have limitations

Which problems

can be solved

through computation?

Limitations of quantum computers

- We have developed several techniques for identifying hardness
 - Undecidability
 - EXP-completeness
 - NP-completeness
- Those techniques are all still applicable even in a world with fullyfunctional quantum computers!
- Complexity theory is intended to be "future-proof" / "timeless"

can be solved

through computation?

Complexity theory:

The study of computational resources

Computational resources: Fuel for algorithms

Sublinear-space computation

- Can we solve any interesting problems using o(n) space?
- The one-tape Turing machine is the not the right model of computation for studying sublinear-space algorithms

Sublinear-space computation

The complexity class SPACE(S)

- Let L be a language and let $S: \mathbb{N} \to \mathbb{N}$ be a function (space bound)
- **Definition:** $L \in SPACE(S)$ if there is a two-tape Turing machine M such that:
 - *M* decides *L*
 - *M* never modifies the symbols written on tape 1
 - Whenever M reads a blank symbol \sqcup on tape 1, the tape 1 head moves to the left
 - We have $S_M(n) = O(S(n))$, where $S_M(n)$ is the maximum *i* such that the tape 2 head visits cell *i* during the computation of *M* on *w* for some $w \in \Sigma^n$

The complexity class L

- Exercise: $PSPACE = U_k SPACE(n^k)$
- **Definition:** $L = SPACE(\log n)$
- L is the set of languages that can be decided in logarithmic space

$\mathsf{BALANCED} \in \mathsf{L}$

- BALANCED = { $x \in \{0, 1\}^* : x$ has equal numbers of zeroes and ones}
- Claim: BALANCED \in L
- **Proof sketch:** Given $x \in \{0, 1\}^n$:
 - Count the number of ones in *x*
 - Count the number of zeroes in *x*
 - Check whether the two counts are equal

These counters are only $\log n$ bits each!

$L \subseteq P$

- Exercise: Show that $L \subseteq P$
- (Similar to the proof that PSPACE \subseteq EXP)

The L vs. P problem

- We expect that $L \neq P$, but we don't know how to prove it
- L = P would mean that every efficient algorithm can be modified so that it only uses a tiny amount of work space

L vs. P vs. NP vs. PSPACE

- $L \subseteq P \subseteq NP \subseteq PSPACE$
- What we expect: All of these containments are strict
- What we can prove: At least one of these containments is strict:

Theorem: $L \neq PSPACE$

Nondeterministic log space computation

- We define NL to be the class of languages that can be decided by a nondeterministic log-space Turing machine
- Equivalently: NL is the class of languages for which membership can be verified in logarithmic space – with the extra requirement that the verifier can only read the certificate one time from left to right

Two surprises about NL

• We expect that $P \neq NP$. However, in the space complexity world...

Savitch's Theorem: NL \subseteq SPACE(log² n)

• We expect that NP \neq coNP. However, in the space complexity world...

Immerman-Szelepcsényi Theorem: NL = coNL