
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Quantum complexity theory

• One can define a complexity class, BQP, consisting of all languages that

could be decided in polynomial time by a fully-functional quantum

computer

• The mathematical definition of BQP is beyond the scope of this course

• One can prove that BPP ⊆ BQP ⊆ PSPACE

2

Shor’s algorithm

• Recall FACTOR = 𝑁, 𝐾 ∶ 𝑁 has a prime factor 𝑝 ≤ 𝐾

• Conjecture: FACTOR ∉ P

• FACTOR is a likely counterexample to the extended Church-Turing thesis!

3

Theorem (Shor’s algorithm): FACTOR ∈ BQP

Quantum computing and NP-completeness

• Recall: FACTOR ∈ NP (guess the factor)

• Shor’s algorithm raises the question: Is FACTOR NP-complete?

• If yes, then NP ⊆ BQP, meaning that all NP-complete problems could be

solved in polynomial time on a fully-functional quantum computer!

4

Complexity of factoring integers

• In most cases, if a language 𝐿 is in NP, then we can either prove 𝐿 ∈ P

or we can prove that 𝐿 is NP-complete

• FACTOR is one of the rare exceptions to this rule

• Conjecture: FACTOR is neither in P nor NP-complete!

5

6

P

NP

NP-complete

NP-hard

3-SAT

FACTOR is
probably here.

“NP-intermediate”

PRIMES

Complexity of factoring integers

• To explain why we expect that FACTOR is not NP-complete, we now

introduce another complexity class, called coNP

• The definition of coNP is the same as the definition of NP, except

that we swap the roles of “yes” and “no”

7

The complexity class coNP

• Let 𝐿 ⊆ Σ∗ be a language

• Definition: 𝐿 ∈ coNP if there exists a randomized polynomial-time

Turing machine 𝑀 such that for every 𝑤 ∈ Σ∗:

• If 𝑤 ∈ 𝐿, then Pr 𝑀 accepts 𝑤 = 1

• If 𝑤 ∉ 𝐿, then Pr 𝑀 accepts 𝑤 ≠ 1

8

The complexity class coNP

• Let 𝐿 be a language, 𝐿 ⊆ Σ∗, and let ത𝐿 = Σ∗ ∖ 𝐿

• Fact: 𝐿 ∈ NP if and only if ത𝐿 ∈ coNP

• coNP is the set of complements of languages in NP

• (This is why it is called “coNP”)

9

The complexity class coNP

• Example: We say that a Boolean formula is unsatisfiable if it is not

satisfiable

• Let 3-UNSAT = { 𝜙 ∶ 𝜙 is an unsatisfiable 3-CNF formula}

• Then 3-UNSAT ∈ coNP, because a satisfying assignment is a

certificate showing that 𝜙 ∉ 3-UNSAT

10

FACTOR ∈ coNP

• FACTOR = { 𝑁, 𝐾 ∶ 𝑁 has a prime factor 𝑝 such that 𝑝 ≤ 𝐾}

• Claim: FACTOR ∈ coNP

• Proof: The certificate for non-membership is the full prime factorization of 𝑁,

i.e., ⟨𝑝1, … , 𝑝𝑘 , 𝑒1, … , 𝑒𝑘⟩ where 𝑁 = 𝑝1
𝑒1 ⋅ ⋯ ⋅ 𝑝𝑘

𝑒𝑘 and 𝑝𝑖’s are distinct primes

• Since 𝑝𝑖 ≥ 2, we have 𝑘 ≤ log 𝑁, so the certificate has poly size

• Verification: Confirm that each 𝑝𝑖 is prime (PRIMES ∈ P); confirm that 𝑁

really is equal to ς𝑖 𝑝𝑖
𝑒𝑖 ; and confirm that the smallest 𝑝𝑖 is bigger than 𝐾

11

The complexity class NP ∩ coNP

• We have shown that FACTOR ∈ NP and FACTOR ∈ coNP

• FACTOR ∈ NP ∩ coNP

• 𝐿 ∈ NP ∩ coNP means that for every instance, there is a certificate:

a certificate of membership for YES instances and a certificate of

non-membership for NO instances

12

The NP vs. coNP problem

• The statement NP = coNP would mean that for every unsatisfiable

circuit, there is some short certificate I could present to prove to you

that a circuit is unsatisfiable

• That sounds counterintuitive! But we don’t really know

13

Conjecture: NP ≠ coNP

14

P

NP

FACTOR NP ∩ coNP

coNP

PSPACE

NP-completeness and NP ∩ coNP

• Fact: Assuming NP ≠ coNP, there are no NP-complete languages

in NP ∩ coNP

• (Proof: Exercise)

• This gives us evidence that FACTOR is not NP-complete

15

16

P

NP

NP-hard

FACTOR

coNP-hard

NP ∩ coNP

coNP

Quantum computing is not a panacea

• FACTOR ∈ BQP, but FACTOR is probably not NP-complete

• In fact, it is conjectured that NP ⊈ BQP

• In this case, even a fully-functional quantum computer would not be

able to solve NP-complete problems in polynomial time

• Even quantum computers have limitations

17

18

P

NP

NP-complete

NP-hard

3-SAT

FACTOR BQP

EXP

Which problems

can be solved

through computation?

19

Limitations of quantum computers

• We have developed several techniques for identifying hardness

• Undecidability

• EXP-completeness

• NP-completeness

• Those techniques are all still applicable even in a world with fully-

functional quantum computers!

• Complexity theory is intended to be “future-proof” / “timeless”

20

Which problems

can be solved

through computation?

21

Complexity theory:

The study of computational resources

22

Computational resources: Fuel for algorithms

23

TIME SPACE RANDOMNESS

QUANTUM PHYSICS PARALLELISMCOMMUNICATION

Sublinear-space computation

• Can we solve any interesting problems using 𝑜 𝑛 space?

• The one-tape Turing machine is the not the right model of

computation for studying sublinear-space algorithms

24

Sublinear-space computation

25

1 1 0♢Read-only input tape

Read-write work tape ♢ 0 1 0

1 1

The complexity class SPACE 𝑆

• Let 𝐿 be a language and let 𝑆: ℕ → ℕ be a function (space bound)

• Definition: 𝐿 ∈ SPACE 𝑆 if there is a two-tape Turing machine 𝑀 such that:

• 𝑀 decides 𝐿

• 𝑀 never modifies the symbols written on tape 1

• Whenever 𝑀 reads a blank symbol ⊔ on tape 1, the tape 1 head moves to the left

• We have 𝑆𝑀 𝑛 = 𝑂 𝑆 𝑛 , where 𝑆𝑀 𝑛 is the maximum 𝑖 such that the tape 2 head

visits cell 𝑖 during the computation of 𝑀 on 𝑤 for some 𝑤 ∈ Σ𝑛

26

The complexity class L

• Exercise: PSPACE = 𝑘ڂ SPACE 𝑛𝑘

• Definition: L = SPACE log 𝑛

• L is the set of languages that can be decided in logarithmic space

27

BALANCED ∈ L

• BALANCED = 𝑥 ∈ {0, 1}∗ ∶ 𝑥 has equal numbers of zeroes and ones

• Claim: BALANCED ∈ L

• Proof sketch: Given 𝑥 ∈ {0, 1}𝑛:

• Count the number of ones in 𝑥

• Count the number of zeroes in 𝑥

• Check whether the two counts are equal

28

These counters are only log 𝑛 bits each!

L ⊆ P

• Exercise: Show that L ⊆ P

• (Similar to the proof that PSPACE ⊆ EXP)

29

30

L

NP

PSPACE

EXP

P

The L vs. P problem

• We expect that L ≠ P, but we don’t know how to prove it

• L = P would mean that every efficient algorithm can be modified so

that it only uses a tiny amount of work space

31

L vs. P vs. NP vs. PSPACE

• L ⊆ P ⊆ NP ⊆ PSPACE

• What we expect: All of these containments are strict

• What we can prove: At least one of these containments is strict:

32

Theorem: L ≠ PSPACE

Nondeterministic log space computation

• We define NL to be the class of languages that can be decided by a

nondeterministic log-space Turing machine

• Equivalently: NL is the class of languages for which membership can

be verified in logarithmic space – with the extra requirement that the

verifier can only read the certificate one time from left to right

33

Two surprises about NL

• We expect that P ≠ NP. However, in the space complexity world…

• We expect that NP ≠ coNP. However, in the space complexity world…

34

Savitch’s Theorem: NL ⊆ SPACE log2 𝑛

Immerman-Szelepcsényi Theorem: NL = coNL

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Quantum complexity theory
	Slide 3: Shor’s algorithm
	Slide 4: Quantum computing and NP-completeness
	Slide 5: Complexity of factoring integers
	Slide 6
	Slide 7: Complexity of factoring integers
	Slide 8: The complexity class co NP
	Slide 9: The complexity class coNP
	Slide 10: The complexity class coNP
	Slide 11: FACTOR element of coNP
	Slide 12: The complexity class NP intersection coNP
	Slide 13: The NP vs. coNP problem
	Slide 14
	Slide 15: NP-completeness and NP intersection coNP
	Slide 16
	Slide 17: Quantum computing is not a panacea
	Slide 18
	Slide 19: Which problems can be solved through computation?
	Slide 20: Limitations of quantum computers
	Slide 21: Which problems can be solved through computation?
	Slide 22: Complexity theory: The study of computational resources
	Slide 23: Computational resources: Fuel for algorithms
	Slide 24: Sublinear-space computation
	Slide 25: Sublinear-space computation
	Slide 26: The complexity class SPACE open paren cap S , close paren
	Slide 27: The complexity class L
	Slide 28: BALANCED element of L
	Slide 29: L subset or equals P
	Slide 30
	Slide 31: The L vs. P problem
	Slide 32: L vs. P vs. NP vs. PSPACE
	Slide 33: Nondeterministic log space computation
	Slide 34: Two surprises about NL

