CMSC 28100

Introduction to
 Complexity Theory

Spring 2024
Instructor: William Hoza

Quantum complexity theory

- One can define a complexity class, BQP, consisting of all languages that could be decided in polynomial time by a fully-functional quantum computer
- The mathematical definition of BQP is beyond the scope of this course
- One can prove that $\mathrm{BPP} \subseteq \mathrm{BQP} \subseteq \mathrm{PSPACE}$

Shor's algorithm

- Recall FACTOR $=\{\langle N, K\rangle: N$ has a prime factor $p \leq K\}$
- Conjecture: FACTOR $\notin \mathrm{P}$

Theorem (Shor's algorithm): FACTOR \in BQP

- FACTOR is a likely counterexample to the extended Church-Turing thesis!

Quantum computing and NP-completeness

- Recall: FACTOR \in NP (guess the factor)
- Shor's algorithm raises the question: Is FACTOR NP-complete?
- If yes, then NP $\subseteq B Q P$, meaning that all NP-complete problems could be solved in polynomial time on a fully-functional quantum computer!

Complexity of factoring integers

- In most cases, if a language L is in NP, then we can either prove $L \in \mathrm{P}$ or we can prove that L is NP-complete
- FACTOR is one of the rare exceptions to this rule
- Conjecture: FACTOR is neither in P nor NP-complete!

Complexity of factoring integers

- To explain why we expect that FACTOR is not NP-complete, we now introduce another complexity class, called coNP
- The definition of coNP is the same as the definition of NP, except that we swap the roles of "yes" and "no"

The complexity class coNP

- Let $L \subseteq \Sigma^{*}$ be a language
- Definition: $L \in$ coNP if there exists a randomized polynomial-time Turing machine M such that for every $w \in \Sigma^{*}$:
- If $w \in L$, then $\operatorname{Pr}[M$ accepts $w]=1$
- If $w \notin L$, then $\operatorname{Pr}[M$ accepts $w] \neq 1$

The complexity class coNP

- Let L be a language, $L \subseteq \Sigma^{*}$, and let $\bar{L}=\Sigma^{*} \backslash L$
- Fact: $L \in$ NP if and only if $\bar{L} \in$ coNP
- coNP is the set of complements of languages in NP
- (This is why it is called "coNP")

The complexity class coNP

- Example: We say that a Boolean formula is unsatisfiable if it is not satisfiable
- Let 3-UNSAT $=\{\langle\phi\rangle: \phi$ is an unsatisfiable 3-CNF formula $\}$
- Then 3-UNSAT \in coNP, because a satisfying assignment is a certificate showing that $\phi \notin 3$-UNSAT

FACTOR $\in \operatorname{coNP}$

- $\operatorname{FACTOR}=\{\langle N, K\rangle: N$ has a prime factor p such that $p \leq K\}$
- Claim: FACTOR \in coNP
- Proof: The certificate for non-membership is the full prime factorization of N, i.e., $\left\langle p_{1}, \ldots, p_{k}, e_{1}, \ldots, e_{k}\right\rangle$ where $N=p_{1}^{e_{1}} \cdots \cdots p_{k}^{e_{k}}$ and p_{i} 's are distinct primes
- Since $p_{i} \geq 2$, we have $k \leq \log N$, so the certificate has poly size
- Verification: Confirm that each p_{i} is prime (PRIMES $\in \mathrm{P}$); confirm that N really is equal to $\prod_{i} p_{i}^{e_{i}}$; and confirm that the smallest p_{i} is bigger than K

The complexity class NP \cap coNP

- We have shown that FACTOR \in NP and FACTOR \in coNP
- FACTOR $\in \operatorname{NP} \cap \operatorname{coNP}$
- $L \in N P \cap$ coNP means that for every instance, there is a certificate: a certificate of membership for YES instances and a certificate of non-membership for NO instances

The NP vs. coNP problem

Conjecture: $\mathrm{NP} \neq$ coNP

- The statement NP = coNP would mean that for every unsatisfiable circuit, there is some short certificate I could present to prove to you that a circuit is unsatisfiable
- That sounds counterintuitive! But we don't really know

NP-completeness and $\mathrm{NP} \cap$ coNP

- Fact: Assuming NP \neq coNP, there are no NP-complete languages in $\mathrm{NP} \cap \mathrm{coNP}$
- (Proof: Exercise)
- This gives us evidence that FACTOR is not NP-complete

Quantum computing is not a panacea

- FACTOR \in BQP, but FACTOR is probably not NP-complete
- In fact, it is conjectured that NP $\nsubseteq \mathrm{BQP}$
- In this case, even a fully-functional quantum computer would not be able to solve NP-complete problems in polynomial time
- Even quantum computers have limitations

Which problems

can be solved

through computation?
 I HASAT

Limitations of quantum computers

- We have developed several techniques for identifying hardness
- Undecidability
- EXP-completeness
- NP-completeness
- Those techniques are all still applicable even in a world with fullyfunctional quantum computers!
- Complexity theory is intended to be "future-proof" / "timeless"

Whietrproblems

canbesolved
througheomputation?

Complexity theory:

The study of computational resources

Computational resources: Fuel for algorithms

TIME

SPACE

QUANTUM PHYSICS

RANDOMNESS

PARALLELISM

Sublinear-space computation

- Can we solve any interesting problems using $o(n)$ space?
- The one-tape Turing machine is the not the right model of computation for studying sublinear-space algorithms

Sublinear-space computation

Read-only input tape \rightarrow

Read-write work tape \rightarrow

The complexity class SPACE(S)

- Let L be a language and let $S: \mathbb{N} \rightarrow \mathbb{N}$ be a function (space bound)
- Definition: $L \in \operatorname{SPACE}(S)$ if there is a two-tape Turing machine M such that:
- M decides L
- M never modifies the symbols written on tape 1
- Whenever M reads a blank symbol \sqcup on tape 1 , the tape 1 head moves to the left
- We have $S_{M}(n)=O(S(n))$, where $S_{M}(n)$ is the maximum i such that the tape 2 head visits cell i during the computation of M on w for some $w \in \Sigma^{n}$

The complexity class L

- Exercise: $\operatorname{PSPACE}=U_{k} \operatorname{SPACE}\left(n^{k}\right)$
- Definition: $\mathrm{L}=\operatorname{SPACE}(\log n)$
- L is the set of languages that can be decided in logarithmic space

BALANCED $\in L$

- BALANCED $=\left\{x \in\{0,1\}^{*}: x\right.$ has equal numbers of zeroes and ones $\}$
- Claim: BALANCED \in L
- Proof sketch: Given $x \in\{0,1\}^{n}$:
- Count the number of ones in x
- Count the number of zeroes in x

These counters are only $\log n$ bits each!

- Check whether the two counts are equal

$\mathrm{L} \subseteq \mathrm{P}$

- Exercise: Show that $\mathrm{L} \subseteq \mathrm{P}$
- (Similar to the proof that PSPACE \subseteq EXP)

The L vs. P problem

- We expect that $\mathrm{L} \neq \mathrm{P}$, but we don't know how to prove it
- $\mathrm{L}=\mathrm{P}$ would mean that every efficient algorithm can be modified so that it only uses a tiny amount of work space

L vs. P vs. NP vs. PSPACE

- $\mathrm{L} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE}$
- What we expect: All of these containments are strict
- What we can prove: At least one of these containments is strict:

Theorem: $\mathrm{L} \neq \mathrm{PSPACE}$

Nondeterministic log space computation

- We define NL to be the class of languages that can be decided by a nondeterministic log-space Turing machine
- Equivalently: NL is the class of languages for which membership can be verified in logarithmic space - with the extra requirement that the verifier can only read the certificate one time from left to right

Two surprises about NL

- We expect that $\mathrm{P} \neq \mathrm{NP}$. However, in the space complexity world...

$$
\text { Savitch's Theorem: } \mathrm{NL} \subseteq \mathrm{SPACE}\left(\log ^{2} n\right)
$$

- We expect that NP \neq coNP. However, in the space complexity world...
Immerman-Szelepcsényi Theorem: NL = coNL

