CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Course Review

Which problems
can be solved

through computation?

Strings and languages

* X" is the set of all strings over the alphabet X (of any finite length)
e Alanguage is a subset L € X~

* A language models a computational problem, namely, the problem of

distinguishing strings in L from strings outside L

* To study other types of problems, we can often formulate a closely

related language. (E.g., problem set 6: searching for large cliques)

Which problems
can be solved

through computation?

Turing machines o I I O I Y

JAN

* A tape extends infinitely to the right
* The machine uses a head to read from and write to the tape
* The machine also has an internal state

* “Local evolution” of a Turing machine is described by the transition

function 6:Q XT' » Q X I' x {L, R}

Which problems
can be solved

through computation?

Deciding a language

-

Accept

Input —— | Turing Machine | —— < Reject

Run forever (“loop”)

-

* Let M be a Turing machine and let L be a language

* We say that M decides L if M accepts every w € L and M rejects every
weX \L

The Church-Turing Thesis

* Let L be a language

Church-Turing Thesis:
The problem of deciding whether a given string isin L

can be “solved through computation” if and only if +— Intuitive notion

Mathematically
precise notion

there is a Turing machine that decides L.

The Physical Church-Turing Thesis

* Let L be a language

Physical Church-Turing Thesis:
It is physically possible to build a device that decides L

if and only if there is a Turing machine that decides L.

10

Code as data

* A Turing machine M represents an algorithm
At the same time, a TM M can be encoded as a string (M)

* This string (M) could be the input or output of a different algorithm!

11

Universal Turing machines

Theorem: There exists a Turing machine U such that for every Turing
machine M and every input w:

* If M accepts w, then U accepts (M, w).

* If M rejects w, then U rejects (M, w).

* If M loops on input w, then U loops on (M, w).

12

Universal Turing machines

* If you are stranded on an alien planet and you are trying to build a

computer, your job is to build a universal Turing machine

* A universal Turing machine can be “programmed” to do anything that

is computationally possible

13

The halting problem

« HALT = {{M,w) : M is a Turing machine that halts on w}

Theorem: HALT is undecidable

14

Reductions

* A mapping reduction from L to L, is a way of converting instances of

L, into equivalent instances of L,

“YES” maps to “YES”

“NO” maps to “NO”

15

Using reductions to prove decidability

Algorithm that decides L4

P e e e T e e e e e e e T T T N I il T T T

Algorithm that f(w)

computes [

Algorithm that

decides L,

__

The “mapping reduction” is f

16

Undecidability via reductions

* To prove that some language L is undecidable:

* Identify a suitable language Lyarp that we previously proved is undecidable

* Design a mapping reduction f from Lyagp to L

* Example: Post’s Correspondence Problem

Theorem: PCP is undecidable

17

Asymptotic analysis

Tis o(f)
T'is O(f)
T is ©(f)
Tis Q(f)
Tis w(f)

T (n) grows more slowly than f(n)
T(n)isat mostc - f(n)

T(n) and f(n) grow at the same rate
T(n)isatleastc- f(n)

T (n) grows more quickly than f(n)

<

IA

\Y

18

Polynomial-time computation

* We mainly focus on the distinction between polynomial-time

algorithms and exponential-time algorithms
* We proved that n* = 0(2") for every constant k
* Exponential-time algorithms are almost worthless

* Polynomial-time algorithms are usually usable

19

Complexity classes

* A complexity class is a set of languages
* Alanguage isin P if it can be decided by a polynomial-time TM
* A language is in PSPACE if it can be decided by a polynomial-space TM

e Alanguage is in EXP if it can be decided by a TM with time complexity

opoly(n)

20

Randomized Turing machines

Input tape — O 1 1 0 L L

Randomness tape = O

21

The complexity class BPP

* Alanguage L is in BPP if there is a polynomial-time randomized Turing
machine M such that:

* Forevery w € L, we have Pr[M accepts w| = 2/3

* Forevery w ¢ L, we have Pr[M rejects w] = 2/3

* Amplification lemma: We can replace 2/3 with 1 — 1/2"k

22

P € BPP € PSPACE € EXP

e P C BPP because we can elect to not use our random bits

 BPP € PSPACE because we can deterministically try all possible

settings of the random tape (“brute-force derandomization®)

 PSPACE € EXP because a polynomial-space algorithm that uses
more than exponential time would repeat a configuration (problem

set 2), hence it would get stuck in an infinite loop

23

Decidable languages

PSPACE

24

P vs. BPP

* To prove that certain problems are intractable, we need a

mathematical model of tractability
P and BPP are both reasonable models of tractability

* Open Question: Does P = BPP?

25

Communication complexity

* Goal: Compute f (x, v) using as

little communication as possible

Alice holds x

Communication channel

<

>

Bob holds y

26

Communication complexity of EQ,,

'EQn(x»y) =lex=y

Theorem: Every deterministic communication protocol that

computes EQ,, has cost at leastn + 1

Theorem: There is a randomized communication protocol with

cost O(logn) that computes EQ,, with high probability

27

P vs. BPP

 Communication complexity might suggest P += BPP

* However, we gathered some more “evidence” about the P vs. BPP

question by studying Boolean logic: AND / OR / NOT operations

28

Conjunctive normal form

* Aliteral is a Boolean variable or its negation (x; or Xx;)
* A clause is a disjunction (OR) of literals

e A conjunctive normal form (CNF) formula is a conjunction (AND) of

clauses

* |n other words, a CNF formula is an AND of ORs of literals

29

Conjunctive normal form

Lemma: Every function f: {0,1}"* — {0, 1} can
be represented by a CNF formula in which
 There are at most 2™ clauses

e Each clause has at most n literals

30

Boolean circuits

e A “circuit” is a network of
AND/OR/NQOT gates applied to

Boolean variables

31

Circuit complexity

* CNF representation = Every function f: {0, 1}" — {0, 1}'" can be

computed by a circuit of size 0(2™ - n - m)

* In your homework, you showed that there exists a function

f£:{0,1}"* - {0, 1} with circuit complexity Q(2"™/n)

32

Polynomial-size circuits

* Alanguage L is in PSIZE if for every n, there is a circuit of size

poly(n) that decides L restricted to inputs of length n

Theorem: P € PSIZE.

* Polynomial-Time Algorithm = Polynomial-Size Circuits

* In your homework, you showed that P # PSIZE

33

Adleman’s theorem

Adleman’s Theorem: BPP € PSIZE

* Adleman’s theorem is tantalizingly similar to the statement “P = BPP”

* Conjecture: P = BPP

34

The Extended Church-Turing Thesis

* Let L be a language

Extended Church-Turing Thesis:
It is physically possible to build a device that

decides L in polynomial time if and only if L € P.

* The Extended Church-Turing thesis is probably false because of quantum

computing

The Time Hierarchy Theorem

* Let T:N — N be any “reasonable” (time-constructible) function

Time Hierarchy Theorem: TIME(o(T)) + TIME(T?)

* Consequence: P # EXP

36

EXP-completeness

* If every language in EXP reduces to L in polynomial time, then we say

that L is EXP-hard
* If L is EXP-hard and L € EXP, then we say that L is EXP-complete

 EXP-complete languages are not in P

* BOUNDED-HALT is EXP-complete

37

EXP-completeness

BOUNDED-HALT

EXP-hard

DAY
EXP-complete

38

The complexity class NP

* Alanguage L is in NP if there is a polynomial-time randomized Turing
machine M such that:

* For every w € L, we have Pr[M accepts w] # 0

* Foreveryw € L, we have Pr[M accepts w] =0

* Equivalent: Every w € L has a certificate of membership, and

certificates can be verified in (deterministic) polynomial time

39

EXP

PSPACE

40

NP-completeness

* A language L is NP-complete
if L € NP and every language
in NP reduces to L in

polynomial time

NP-complete

41

Circuit satisfiability

e CIRCUIT-SAT = {{C) : C is a satisfiable circuit}

Theorem: CIRCUIT-SAT is NP-complete

* Key idea: If L € P, then not only does L have polynomial-size circuits

(L € PSIZE), but in fact we can efficiently construct the circuits

42

The Cook-Levin Theorem

* Definition: A k-CNF formula is an AND of ORs of at most k literals

* Definition: k-SAT = {(¢) : ¢ is a satisfiable k-CNF formula}

The Cook-Levin Theorem: 3-SAT is NP-complete

e Using this theorem, we also proved that CLIQUE is NP-complete

* On your homework, you showed, e.g., that 3-COLORABLE is NP-complete

43

The P vs. NP problem

* We conjecture that P # NP: Solving and verifying are different

* A proof that P = NP would change the world

* *Assuming the proof gives us truly practical algorithms

* We could solve countless important problems in polynomial time (&

* Hackers could break our encryption schemes in polynomial time =

44

Lessons

 Computation has intrinsic limitations
* Mathematics and computer science form a powerful combination

* Complexity theory enables us to formulate and study profound
guestions

e Questions about the human condition

* Questions about the physical universe

45

Thank youl!

* Teaching you has been a privilege

* | hope you’ve enjoyed taking the course as much as I've enjoyed

teaching it

* Please fill out the College Course Feedback Form using My.UChicago
(deadline is May 26)

* See you next week for office hours and the final exam!

46

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Course Review
	Slide 3: Which problems can be solved through computation?
	Slide 4: Strings and languages
	Slide 5: Which problems can be solved through computation?
	Slide 6: Turing machines
	Slide 7: Which problems can be solved through computation?
	Slide 8: Deciding a language
	Slide 9: The Church-Turing Thesis
	Slide 10: The Physical Church-Turing Thesis
	Slide 11: Code as data
	Slide 12: Universal Turing machines
	Slide 13: Universal Turing machines
	Slide 14: The halting problem
	Slide 15: Reductions
	Slide 16: Using reductions to prove decidability
	Slide 17: Undecidability via reductions
	Slide 18: Asymptotic analysis
	Slide 19: Polynomial-time computation
	Slide 20: Complexity classes
	Slide 21: Randomized Turing machines
	Slide 22: The complexity class BPP
	Slide 23: P subset or equals BPP subset or equals PSPACE subset or equals EXP
	Slide 24
	Slide 25: P vs. BPP
	Slide 26: Communication complexity
	Slide 27: Communication complexity of subscript base , EQ , end base , sub n
	Slide 28: P vs. BPP
	Slide 29: Conjunctive normal form
	Slide 30: Conjunctive normal form
	Slide 31: Boolean circuits
	Slide 32: Circuit complexity
	Slide 33: Polynomial-size circuits
	Slide 34: Adleman’s theorem
	Slide 35: The Extended Church-Turing Thesis
	Slide 36: The Time Hierarchy Theorem
	Slide 37: EXP-completeness
	Slide 38: EXP-completeness
	Slide 39: The complexity class NP
	Slide 40
	Slide 41: NP-completeness
	Slide 42: Circuit satisfiability
	Slide 43: The Cook-Levin Theorem
	Slide 44: The P vs. NP problem
	Slide 45: Lessons
	Slide 46: Thank you!

