
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Course Review

2

Which problems

can be solved

through computation?

3

Strings and languages

• Σ∗ is the set of all strings over the alphabet Σ (of any finite length)

• A language is a subset 𝐿 ⊆ Σ∗

• A language models a computational problem, namely, the problem of

distinguishing strings in 𝐿 from strings outside 𝐿

• To study other types of problems, we can often formulate a closely

related language. (E.g., problem set 6: searching for large cliques)

4

Which problems

can be solved

through computation?

5

Turing machines

• A tape extends infinitely to the right

• The machine uses a head to read from and write to the tape

• The machine also has an internal state

• “Local evolution” of a Turing machine is described by the transition

function 𝛿: 𝑄 × Γ → 𝑄 × Γ × L, R

6

1 1 0♢ ⊔ ⊔

Which problems

can be solved

through computation?

7

Deciding a language

• Let 𝑀 be a Turing machine and let 𝐿 be a language

• We say that 𝑀 decides 𝐿 if 𝑀 accepts every 𝑤 ∈ 𝐿 and 𝑀 rejects every

𝑤 ∈ Σ∗ ∖ 𝐿

8

Input Turing Machine

Accept

Reject

Run forever (“loop”)

The Church-Turing Thesis

• Let 𝐿 be a language

9

Church-Turing Thesis:

The problem of deciding whether a given string is in 𝐿

can be “solved through computation” if and only if

there is a Turing machine that decides 𝐿.

Intuitive notion

Mathematically
precise notion

The Physical Church-Turing Thesis

• Let 𝐿 be a language

10

Physical Church-Turing Thesis:

It is physically possible to build a device that decides 𝐿

if and only if there is a Turing machine that decides 𝐿.

Code as data

• A Turing machine 𝑀 represents an algorithm

• At the same time, a TM 𝑀 can be encoded as a string 𝑀

• This string 𝑀 could be the input or output of a different algorithm!

11

Universal Turing machines

12

Theorem: There exists a Turing machine 𝑈 such that for every Turing

machine 𝑀 and every input 𝑤:

• If 𝑀 accepts 𝑤, then 𝑈 accepts ⟨𝑀, 𝑤⟩.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀, 𝑤⟩.

• If 𝑀 loops on input 𝑤, then 𝑈 loops on ⟨𝑀, 𝑤⟩.

Universal Turing machines

• If you are stranded on an alien planet and you are trying to build a

computer, your job is to build a universal Turing machine

• A universal Turing machine can be “programmed” to do anything that

is computationally possible

13

The halting problem

• HALT = { 𝑀, 𝑤 ∶ 𝑀 is a Turing machine that halts on 𝑤}

14

Theorem: HALT is undecidable

Reductions

• A mapping reduction from 𝐿1 to 𝐿2 is a way of converting instances of

𝐿1 into equivalent instances of 𝐿2

15

Σ1
∗ Σ2

∗

𝐿1 𝐿2

“YES” maps to “YES”

“NO” maps to “NO”

Using reductions to prove decidability

16

Algorithm that

computes 𝑓

Algorithm that

decides 𝐿2

𝑤
𝑓 𝑤

Acc/Rej

Algorithm that decides 𝐿1

The “mapping reduction” is 𝑓

Undecidability via reductions

• To prove that some language 𝐿 is undecidable:

• Identify a suitable language 𝐿HARD that we previously proved is undecidable

• Design a mapping reduction 𝑓 from 𝐿HARD to 𝐿

• Example: Post’s Correspondence Problem

17

Theorem: PCP is undecidable

Asymptotic analysis

18

Notation In words Analogy

𝑇 is 𝑜 𝑓 𝑇 𝑛 grows more slowly than 𝑓 𝑛 <

𝑇 is 𝑂 𝑓 𝑇 𝑛 is at most 𝑐 ⋅ 𝑓 𝑛 ≤

𝑇 is Θ 𝑓 𝑇 𝑛 and 𝑓 𝑛 grow at the same rate =

𝑇 is Ω 𝑓 𝑇 𝑛 is at least 𝑐 ⋅ 𝑓 𝑛 ≥

𝑇 is 𝜔 𝑓 𝑇 𝑛 grows more quickly than 𝑓 𝑛 >

Polynomial-time computation

• We mainly focus on the distinction between polynomial-time

algorithms and exponential-time algorithms

• We proved that 𝑛𝑘 = 𝑜 2𝑛 for every constant 𝑘

• Exponential-time algorithms are almost worthless

• Polynomial-time algorithms are usually usable

19

Complexity classes

• A complexity class is a set of languages

• A language is in P if it can be decided by a polynomial-time TM

• A language is in PSPACE if it can be decided by a polynomial-space TM

• A language is in EXP if it can be decided by a TM with time complexity

2poly 𝑛

20

Randomized Turing machines

21

1 1 0♢Input tape

Randomness tape ♢

⊔ ⊔

The complexity class BPP

• A language 𝐿 is in BPP if there is a polynomial-time randomized Turing

machine 𝑀 such that:

• For every 𝑤 ∈ 𝐿, we have Pr 𝑀 accepts 𝑤 ≥ 2/3

• For every 𝑤 ∉ 𝐿, we have Pr 𝑀 rejects 𝑤 ≥ 2/3

• Amplification lemma: We can replace 2/3 with 1 − 1/2𝑛𝑘

22

P ⊆ BPP ⊆ PSPACE ⊆ EXP

• P ⊆ BPP because we can elect to not use our random bits

• BPP ⊆ PSPACE because we can deterministically try all possible

settings of the random tape (“brute-force derandomization”)

• PSPACE ⊆ EXP because a polynomial-space algorithm that uses

more than exponential time would repeat a configuration (problem

set 2), hence it would get stuck in an infinite loop

23

24

P

EXP

Decidable languages

BPP

PSPACE

P vs. BPP

• To prove that certain problems are intractable, we need a

mathematical model of tractability

• P and BPP are both reasonable models of tractability

• Open Question: Does P = BPP?

25

Communication complexity

• Goal: Compute 𝑓 𝑥, 𝑦 using as

little communication as possible

26

Alice holds 𝑥 Bob holds 𝑦

Communication channel

Communication complexity of EQ𝑛

• EQ𝑛 𝑥, 𝑦 = 1 ⇔ 𝑥 = 𝑦

27

Theorem: Every deterministic communication protocol that

computes EQ𝑛 has cost at least 𝑛 + 1

Theorem: There is a randomized communication protocol with

cost 𝑂 log 𝑛 that computes EQ𝑛 with high probability

P vs. BPP

• Communication complexity might suggest P ≠ BPP

• However, we gathered some more “evidence” about the P vs. BPP

question by studying Boolean logic: AND / OR / NOT operations

28

Conjunctive normal form

• A literal is a Boolean variable or its negation (𝑥𝑖 or ҧ𝑥𝑖)

• A clause is a disjunction (OR) of literals

• A conjunctive normal form (CNF) formula is a conjunction (AND) of

clauses

• In other words, a CNF formula is an AND of ORs of literals

29

Conjunctive normal form

30

Lemma: Every function 𝑓: {0, 1}𝑛 → 0, 1 can

be represented by a CNF formula in which

• There are at most 2𝑛 clauses

• Each clause has at most 𝑛 literals

Boolean circuits

• A “circuit” is a network of

AND/OR/NOT gates applied to

Boolean variables

31

∨

∧ ∧

∨ ∨

∧ ∧ ∧ ∧

𝑥1 𝑥2 𝑥3 𝑥4

¬ ¬ ¬ ¬

¬ ¬

Circuit complexity

• CNF representation ⇒ Every function 𝑓: {0, 1}𝑛 → {0, 1}𝑚 can be

computed by a circuit of size 𝑂 2𝑛 ⋅ 𝑛 ⋅ 𝑚

• In your homework, you showed that there exists a function

𝑓: {0, 1}𝑛 → {0, 1} with circuit complexity Ω 2𝑛/𝑛

32

Polynomial-size circuits

• A language 𝐿 is in PSIZE if for every 𝑛, there is a circuit of size

poly 𝑛 that decides 𝐿 restricted to inputs of length 𝑛

• Polynomial-Time Algorithm ⇒ Polynomial-Size Circuits

• In your homework, you showed that P ≠ PSIZE

33

Theorem: P ⊆ PSIZE.

Adleman’s theorem

• Adleman’s theorem is tantalizingly similar to the statement “P = BPP”

• Conjecture: P = BPP

34

Adleman’s Theorem: BPP ⊆ PSIZE

The Extended Church-Turing Thesis

• Let 𝐿 be a language

• The Extended Church-Turing thesis is probably false because of quantum

computing
35

Extended Church-Turing Thesis:

It is physically possible to build a device that

decides 𝐿 in polynomial time if and only if 𝐿 ∈ P.

The Time Hierarchy Theorem

• Let 𝑇: ℕ → ℕ be any “reasonable” (time-constructible) function

• Consequence: P ≠ EXP

36

Time Hierarchy Theorem: TIME 𝑜 𝑇 ≠ TIME 𝑇3

EXP-completeness

• If every language in EXP reduces to 𝐿 in polynomial time, then we say

that 𝐿 is EXP-hard

• If 𝐿 is EXP-hard and 𝐿 ∈ EXP, then we say that 𝐿 is EXP-complete

• EXP-complete languages are not in P

• BOUNDED-HALT is EXP-complete

37

EXP-completeness

38

P

EXP

EXP-complete

EXP-hard

BOUNDED-HALT

The complexity class NP

• A language 𝐿 is in NP if there is a polynomial-time randomized Turing

machine 𝑀 such that:

• For every 𝑤 ∈ 𝐿, we have Pr 𝑀 accepts 𝑤 ≠ 0

• For every 𝑤 ∉ 𝐿, we have Pr 𝑀 accepts 𝑤 = 0

• Equivalent: Every 𝑤 ∈ 𝐿 has a certificate of membership, and

certificates can be verified in (deterministic) polynomial time

39

40

P

PSPACE

EXP

NP

NP-completeness

• A language 𝐿 is NP-complete

if 𝐿 ∈ NP and every language

in NP reduces to 𝐿 in

polynomial time

41

P

NP

NP-complete

NP-hard

Circuit satisfiability

• CIRCUIT-SAT = 𝐶 ∶ 𝐶 is a satisfiable circuit

• Key idea: If 𝐿 ∈ P, then not only does 𝐿 have polynomial-size circuits

(𝐿 ∈ PSIZE), but in fact we can efficiently construct the circuits

42

Theorem: CIRCUIT-SAT is NP-complete

The Cook-Levin Theorem

• Definition: A 𝑘-CNF formula is an AND of ORs of at most 𝑘 literals

• Definition: 𝑘-SAT = { 𝜙 ∶ 𝜙 is a satisfiable 𝑘-CNF formula}

• Using this theorem, we also proved that CLIQUE is NP-complete

• On your homework, you showed, e.g., that 3-COLORABLE is NP-complete

43

The Cook-Levin Theorem: 3-SAT is NP-complete

The P vs. NP problem

• We conjecture that P ≠ NP: Solving and verifying are different

• A proof that P = NP would change the world

• *Assuming the proof gives us truly practical algorithms

• We could solve countless important problems in polynomial time

• Hackers could break our encryption schemes in polynomial time

44

Lessons

• Computation has intrinsic limitations

• Mathematics and computer science form a powerful combination

• Complexity theory enables us to formulate and study profound

questions

• Questions about the human condition

• Questions about the physical universe

45

Thank you!

• Teaching you has been a privilege

• I hope you’ve enjoyed taking the course as much as I’ve enjoyed

teaching it

• Please fill out the College Course Feedback Form using My.UChicago

(deadline is May 26)

• See you next week for office hours and the final exam!

46

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Course Review
	Slide 3: Which problems can be solved through computation?
	Slide 4: Strings and languages
	Slide 5: Which problems can be solved through computation?
	Slide 6: Turing machines
	Slide 7: Which problems can be solved through computation?
	Slide 8: Deciding a language
	Slide 9: The Church-Turing Thesis
	Slide 10: The Physical Church-Turing Thesis
	Slide 11: Code as data
	Slide 12: Universal Turing machines
	Slide 13: Universal Turing machines
	Slide 14: The halting problem
	Slide 15: Reductions
	Slide 16: Using reductions to prove decidability
	Slide 17: Undecidability via reductions
	Slide 18: Asymptotic analysis
	Slide 19: Polynomial-time computation
	Slide 20: Complexity classes
	Slide 21: Randomized Turing machines
	Slide 22: The complexity class BPP
	Slide 23: P subset or equals BPP subset or equals PSPACE subset or equals EXP
	Slide 24
	Slide 25: P vs. BPP
	Slide 26: Communication complexity
	Slide 27: Communication complexity of subscript base , EQ , end base , sub n
	Slide 28: P vs. BPP
	Slide 29: Conjunctive normal form
	Slide 30: Conjunctive normal form
	Slide 31: Boolean circuits
	Slide 32: Circuit complexity
	Slide 33: Polynomial-size circuits
	Slide 34: Adleman’s theorem
	Slide 35: The Extended Church-Turing Thesis
	Slide 36: The Time Hierarchy Theorem
	Slide 37: EXP-completeness
	Slide 38: EXP-completeness
	Slide 39: The complexity class NP
	Slide 40
	Slide 41: NP-completeness
	Slide 42: Circuit satisfiability
	Slide 43: The Cook-Levin Theorem
	Slide 44: The P vs. NP problem
	Slide 45: Lessons
	Slide 46: Thank you!

