CMSC 28100

Introduction to
 Complexity Theory

Spring 2024
Instructor: William Hoza

Course Review

Which problems

can be solved
through computation?

Strings and languages

- Σ^{*} is the set of all strings over the alphabet Σ (of any finite length)
- A language is a subset $L \subseteq \Sigma^{*}$
- A language models a computational problem, namely, the problem of distinguishing strings in L from strings outside L
- To study other types of problems, we can often formulate a closely related language. (E.g., problem set 6: searching for large cliques)

Which problems

can be solved
through computation?

Turing machines

- A tape extends infinitely to the right
- The machine uses a head to read from and write to the tape
- The machine also has an internal state
- "Local evolution" of a Turing machine is described by the transition function $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$

Which problems

can be solved

through computation?

Deciding a language

- Let M be a Turing machine and let L be a language
- We say that M decides L if M accepts every $w \in L$ and M rejects every $w \in \Sigma^{*} \backslash L$

The Church-Turing Thesis

- Let L be a language

Church-Turing Thesis:

The problem of deciding whether a given string is in L can be "solved through computation" if and only if there is a Turing machine that decides L.

Intuitive notion

Mathematically precise notion

The Physical Church-Turing Thesis

- Let L be a language

Physical Church-Turing Thesis:

It is physically possible to build a device that decides L if and only if there is a Turing machine that decides L.

Code as data

- A Turing machine M represents an algorithm
- At the same time, a TM M can be encoded as a string $\langle M\rangle$
- This string $\langle M\rangle$ could be the input or output of a different algorithm!

Universal Turing machines

Theorem: There exists a Turing machine U such that for every Turing machine M and every input w :

- If M accepts w, then U accepts $\langle M, w\rangle$.
- If M rejects w, then U rejects $\langle M, w\rangle$.
- If M loops on input w, then U loops on $\langle M, w\rangle$.

Universal Turing machines

- If you are stranded on an alien planet and you are trying to build a computer, your job is to build a universal Turing machine
- A universal Turing machine can be "programmed" to do anything that is computationally possible

The halting problem

- $\operatorname{HALT}=\{\langle M, w\rangle: M$ is a Turing machine that halts on $w\}$

Theorem: HALT is undecidable

Reductions

- A mapping reduction from L_{1} to L_{2} is a way of converting instances of L_{1} into equivalent instances of L_{2}

"YES" maps to "YES"
"NO" maps to "NO"

Using reductions to prove decidability

Algorithm that decides L_{1}

The "mapping reduction" is f

Undecidability via reductions

- To prove that some language L is undecidable:
- Identify a suitable language $L_{\text {HARD }}$ that we previously proved is undecidable
- Design a mapping reduction f from $L_{\text {HARD }}$ to L
- Example: Post's Correspondence Problem

Theorem: PCP is undecidable

Asymptotic analysis

Notation	In words	Analogy
T is $o(f)$	$T(n)$ grows more slowly than $f(n)$	$<$
T is $O(f)$	$T(n)$ is at most $c \cdot f(n)$	\leq
T is $\Theta(f)$	$T(n)$ and $f(n)$ grow at the same rate	$=$
T is $\Omega(f)$	$T(n)$ is at least $c \cdot f(n)$	\geq
T is $\omega(f)$	$T(n)$ grows more quickly than $f(n)$	$>$

Polynomial-time computation

- We mainly focus on the distinction between polynomial-time algorithms and exponential-time algorithms
- We proved that $n^{k}=o\left(2^{n}\right)$ for every constant k
- Exponential-time algorithms are almost worthless
- Polynomial-time algorithms are usually usable

Complexity classes

- A complexity class is a set of languages
- A language is in P if it can be decided by a polynomial-time TM
- A language is in PSPACE if it can be decided by a polynomial-space TM
- A language is in EXP if it can be decided by a TM with time complexity $2^{\text {poly }(n)}$

Randomized Turing machines

The complexity class BPP

- A language L is in BPP if there is a polynomial-time randomized Turing machine M such that:
- For every $w \in L$, we have $\operatorname{Pr}[M$ accepts $w] \geq 2 / 3$
- For every $w \notin L$, we have $\operatorname{Pr}[M$ rejects $w] \geq 2 / 3$
- Amplification lemma: We can replace $2 / 3$ with $1-1 / 2^{n^{k}}$

$\mathrm{P} \subseteq \mathrm{BPP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXP}$

- $\mathrm{P} \subseteq \mathrm{BPP}$ because we can elect to not use our random bits
- BPP \subseteq PSPACE because we can deterministically try all possible settings of the random tape ("brute-force derandomization")
- PSPACE \subseteq EXP because a polynomial-space algorithm that uses more than exponential time would repeat a configuration (problem set 2), hence it would get stuck in an infinite loop

P vs. BPP

- To prove that certain problems are intractable, we need a mathematical model of tractability
- P and BPP are both reasonable models of tractability
- Open Question: Does $\mathrm{P}=\mathrm{BPP}$?

Communication complexity

- Goal: Compute $f(x, y)$ using as little communication as possible

Alice holds x

Communication channel

Bob holds y

Communication complexity of EQ_{n}

- $\mathrm{EQ}_{n}(x, y)=1 \Leftrightarrow x=y$

Theorem: Every deterministic communication protocol that computes EQ_{n} has cost at least $n+1$

Theorem: There is a randomized communication protocol with $\operatorname{cost} O(\log n)$ that computes EQ_{n} with high probability

P vs. BPP

- Communication complexity might suggest $P \neq B P P$
- However, we gathered some more "evidence" about the P vs. BPP question by studying Boolean logic: AND / OR / NOT operations

Conjunctive normal form

- A literal is a Boolean variable or its negation $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$
- A clause is a disjunction (OR) of literals
- A conjunctive normal form (CNF) formula is a conjunction (AND) of clauses
- In other words, a CNF formula is an AND of ORs of literals

Conjunctive normal form

Lemma: Every function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be represented by a CNF formula in which

- There are at most 2^{n} clauses
- Each clause has at most n literals

Boolean circuits

- A "circuit" is a network of

AND/OR/NOT gates applied to
Boolean variables

Circuit complexity

- CNF representation \Rightarrow Every function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ can be computed by a circuit of size $O\left(2^{n} \cdot n \cdot m\right)$
- In your homework, you showed that there exists a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ with circuit complexity $\Omega\left(2^{n} / n\right)$

Polynomial-size circuits

- A language L is in PSIZE if for every n, there is a circuit of size $\operatorname{poly}(n)$ that decides L restricted to inputs of length n

Theorem: $\mathrm{P} \subseteq$ PSIZE.

- Polynomial-Time Algorithm \Rightarrow Polynomial-Size Circuits
- In your homework, you showed that $\mathrm{P} \neq \mathrm{PSIZE}$

Adleman's theorem

Adleman's Theorem: BPP \subseteq PSIZE

- Adleman's theorem is tantalizingly similar to the statement "P = BPP"
- Conjecture: $\mathrm{P}=\mathrm{BPP}$

The Extended Church-Turing Thesis

- Let L be a language

Extended Church-Turing Thesis:

It is physically possible to build a device that decides L in polynomial time if and only if $L \in \mathrm{P}$.

- The Extended Church-Turing thesis is probably false because of quantum computing

The Time Hierarchy Theorem

- Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be any "reasonable" (time-constructible) function

Time Hierarchy Theorem: $\operatorname{TIME}(o(T)) \neq \operatorname{TIME}\left(T^{3}\right)$

- Consequence: $\mathrm{P} \neq \mathrm{EXP}$

EXP-completeness

- If every language in EXP reduces to L in polynomial time, then we say that L is EXP-hard
- If L is EXP-hard and $L \in$ EXP, then we say that L is EXP-complete
- EXP-complete languages are not in P
- BOUNDED-HALT is EXP-complete

EXP-completeness

The complexity class NP

- A language L is in NP if there is a polynomial-time randomized Turing machine M such that:
- For every $w \in L$, we have $\operatorname{Pr}[M$ accepts $w] \neq 0$
- For every $w \notin L$, we have $\operatorname{Pr}[M$ accepts $w]=0$
- Equivalent: Every $w \in L$ has a certificate of membership, and certificates can be verified in (deterministic) polynomial time

NP-completeness

- A language L is NP-complete if $L \in \mathrm{NP}$ and every language in NP reduces to L in polynomial time

Circuit satisfiability

- CIRCUIT-SAT $=\{\langle C\rangle: C$ is a satisfiable circuit $\}$

Theorem: CIRCUIT-SAT is NP-complete

- Key idea: If $L \in \mathrm{P}$, then not only does L have polynomial-size circuits
($L \in$ PSIZE), but in fact we can efficiently construct the circuits

The Cook-Levin Theorem

- Definition: A k-CNF formula is an AND of ORs of at most k literals
- Definition: k-SAT $=\{\langle\phi\rangle: \phi$ is a satisfiable k-CNF formula $\}$

The Cook-Levin Theorem: 3-SAT is NP-complete

- Using this theorem, we also proved that CLIQUE is NP-complete
- On your homework, you showed, e.g., that 3-COLORABLE is NP-complete

The P vs. NP problem

- We conjecture that $P \neq$ NP: Solving and verifying are different
- A proof that $\mathrm{P}=\mathrm{NP}$ would change the world
- *Assuming the proof gives us truly practical algorithms
- We could solve countless important problems in polynomial time
- Hackers could break our encryption schemes in polynomial time

Lessons

- Computation has intrinsic limitations
- Mathematics and computer science form a powerful combination
- Complexity theory enables us to formulate and study profound questions
- Questions about the human condition
- Questions about the physical universe

Thank you!

- Teaching you has been a privilege
- I hope you've enjoyed taking the course as much as I've enjoyed teaching it
- Please fill out the College Course Feedback Form using My.UChicago (deadline is May 26)
- See you next week for office hours and the final exam!

