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Which problems

can be solved

through computation?
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Strings and languages

• Σ∗ is the set of all strings over the alphabet Σ (of any finite length)

• A language is a subset 𝐿 ⊆ Σ∗

• A language models a computational problem, namely, the problem of 

distinguishing strings in 𝐿 from strings outside 𝐿

• To study other types of problems, we can often formulate a closely 

related language. (E.g., problem set 6: searching for large cliques)
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Turing machines

• A tape extends infinitely to the right

• The machine uses a head to read from and write to the tape

• The machine also has an internal state

• “Local evolution” of a Turing machine is described by the transition 

function 𝛿: 𝑄 × Γ → 𝑄 × Γ × L, R
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Deciding a language

• Let 𝑀 be a Turing machine and let 𝐿 be a language

• We say that 𝑀 decides 𝐿 if 𝑀 accepts every 𝑤 ∈ 𝐿 and 𝑀 rejects every 

𝑤 ∈ Σ∗ ∖ 𝐿
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Input Turing Machine

Accept

Reject

Run forever (“loop”)



The Church-Turing Thesis

• Let 𝐿 be a language
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Church-Turing Thesis:

The problem of deciding whether a given string is in 𝐿 

can be “solved through computation” if and only if 

there is a Turing machine that decides 𝐿.

Intuitive notion

Mathematically 
precise notion



The Physical Church-Turing Thesis 

• Let 𝐿 be a language
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Physical Church-Turing Thesis:

It is physically possible to build a device that decides 𝐿 

if and only if there is a Turing machine that decides 𝐿.



Code as data

• A Turing machine 𝑀 represents an algorithm

• At the same time, a TM 𝑀 can be encoded as a string 𝑀

• This string 𝑀  could be the input or output of a different algorithm!
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Universal Turing machines
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Theorem: There exists a Turing machine 𝑈 such that for every Turing 

machine 𝑀 and every input 𝑤:

• If 𝑀 accepts 𝑤, then 𝑈 accepts ⟨𝑀, 𝑤⟩.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀, 𝑤⟩.

• If 𝑀 loops on input 𝑤, then 𝑈 loops on ⟨𝑀, 𝑤⟩.



Universal Turing machines

• If you are stranded on an alien planet and you are trying to build a 

computer, your job is to build a universal Turing machine

• A universal Turing machine can be “programmed” to do anything that 

is computationally possible
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The halting problem

• HALT = { 𝑀, 𝑤 ∶ 𝑀 is a Turing machine that halts on 𝑤}
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Theorem: HALT is undecidable



Reductions

• A mapping reduction from 𝐿1 to 𝐿2 is a way of converting instances of 

𝐿1 into equivalent instances of 𝐿2
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Σ1
∗ Σ2

∗

𝐿1 𝐿2

“YES” maps to “YES”

“NO” maps to “NO”



Using reductions to prove decidability
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Algorithm that 

computes 𝑓

Algorithm that 

decides 𝐿2

𝑤
𝑓 𝑤

Acc/Rej

Algorithm that decides 𝐿1

The “mapping reduction” is 𝑓



Undecidability via reductions

• To prove that some language 𝐿 is undecidable:

• Identify a suitable language 𝐿HARD that we previously proved is undecidable

• Design a mapping reduction 𝑓 from 𝐿HARD to 𝐿

• Example: Post’s Correspondence Problem
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Theorem: PCP is undecidable



Asymptotic analysis
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Notation In words Analogy

𝑇 is 𝑜 𝑓 𝑇 𝑛  grows more slowly than 𝑓 𝑛 <

𝑇 is 𝑂 𝑓 𝑇 𝑛  is at most 𝑐 ⋅ 𝑓 𝑛 ≤

𝑇 is Θ 𝑓 𝑇 𝑛  and 𝑓 𝑛  grow at the same rate =

𝑇 is Ω 𝑓 𝑇 𝑛  is at least 𝑐 ⋅ 𝑓 𝑛 ≥

𝑇 is 𝜔 𝑓 𝑇 𝑛  grows more quickly than 𝑓 𝑛 >



Polynomial-time computation

• We mainly focus on the distinction between polynomial-time 

algorithms and exponential-time algorithms

• We proved that 𝑛𝑘 = 𝑜 2𝑛  for every constant 𝑘

• Exponential-time algorithms are almost worthless

• Polynomial-time algorithms are usually usable
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Complexity classes

• A complexity class is a set of languages

• A language is in P if it can be decided by a polynomial-time TM

• A language is in PSPACE if it can be decided by a polynomial-space TM

• A language is in EXP if it can be decided by a TM with time complexity 

2poly 𝑛
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Randomized Turing machines
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1 1 0♢Input tape 

Randomness tape ♢

⊔ ⊔



The complexity class BPP

• A language 𝐿 is in BPP if there is a polynomial-time randomized Turing 

machine 𝑀 such that:

• For every 𝑤 ∈ 𝐿, we have Pr 𝑀 accepts 𝑤 ≥ 2/3

• For every 𝑤 ∉ 𝐿, we have Pr 𝑀 rejects 𝑤 ≥ 2/3

• Amplification lemma: We can replace 2/3 with 1 − 1/2𝑛𝑘
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P ⊆ BPP ⊆ PSPACE ⊆ EXP 

• P ⊆ BPP because we can elect to not use our random bits

• BPP ⊆ PSPACE because we can deterministically try all possible 

settings of the random tape (“brute-force derandomization”)

• PSPACE ⊆ EXP because a polynomial-space algorithm that uses 

more than exponential time would repeat a configuration (problem 

set 2), hence it would get stuck in an infinite loop
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P vs. BPP

• To prove that certain problems are intractable, we need a 

mathematical model of tractability

• P and BPP are both reasonable models of tractability

• Open Question: Does P = BPP?
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Communication complexity

• Goal: Compute 𝑓 𝑥, 𝑦  using as 

little communication as possible
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Alice holds 𝑥 Bob holds 𝑦

Communication channel



Communication complexity of EQ𝑛

• EQ𝑛 𝑥, 𝑦 = 1 ⇔ 𝑥 = 𝑦
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Theorem: Every deterministic communication protocol that 

computes EQ𝑛 has cost at least 𝑛 + 1

Theorem: There is a randomized communication protocol with 

cost 𝑂 log 𝑛  that computes EQ𝑛 with high probability



P vs. BPP

• Communication complexity might suggest P ≠ BPP

• However, we gathered some more “evidence” about the P vs. BPP 

question by studying Boolean logic: AND / OR / NOT operations
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Conjunctive normal form

• A literal is a Boolean variable or its negation (𝑥𝑖 or ҧ𝑥𝑖)

• A clause is a disjunction (OR) of literals

• A conjunctive normal form (CNF) formula is a conjunction (AND) of 

clauses

• In other words, a CNF formula is an AND of ORs of literals
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Conjunctive normal form
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Lemma: Every function 𝑓: {0, 1}𝑛 → 0, 1  can 

be represented by a CNF formula in which

• There are at most 2𝑛 clauses

• Each clause has at most 𝑛 literals



Boolean circuits

• A “circuit” is a network of 

AND/OR/NOT gates applied to 

Boolean variables
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∨

∧ ∧

∨ ∨

∧ ∧ ∧ ∧

𝑥1 𝑥2 𝑥3 𝑥4

¬ ¬ ¬ ¬

¬ ¬



Circuit complexity

• CNF representation ⇒ Every function 𝑓: {0, 1}𝑛 → {0, 1}𝑚 can be 

computed by a circuit of size 𝑂 2𝑛 ⋅ 𝑛 ⋅ 𝑚

• In your homework, you showed that there exists a function 

𝑓: {0, 1}𝑛 → {0, 1} with circuit complexity Ω 2𝑛/𝑛
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Polynomial-size circuits

• A language 𝐿 is in PSIZE if for every 𝑛, there is a circuit of size 

poly 𝑛  that decides 𝐿 restricted to inputs of length 𝑛

• Polynomial-Time Algorithm ⇒ Polynomial-Size Circuits

• In your homework, you showed that P ≠ PSIZE
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Theorem: P ⊆ PSIZE.



Adleman’s theorem

• Adleman’s theorem is tantalizingly similar to the statement “P = BPP”

• Conjecture: P = BPP
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Adleman’s Theorem: BPP ⊆ PSIZE



The Extended Church-Turing Thesis

• Let 𝐿 be a language

• The Extended Church-Turing thesis is probably false because of quantum 

computing
35

Extended Church-Turing Thesis:

It is physically possible to build a device that 

decides 𝐿 in polynomial time if and only if 𝐿 ∈ P.



The Time Hierarchy Theorem

• Let 𝑇: ℕ → ℕ be any “reasonable” (time-constructible) function

• Consequence: P ≠ EXP

36

Time Hierarchy Theorem: TIME 𝑜 𝑇 ≠ TIME 𝑇3



EXP-completeness

• If every language in EXP reduces to 𝐿 in polynomial time, then we say 

that 𝐿 is EXP-hard

• If 𝐿 is EXP-hard and 𝐿 ∈ EXP, then we say that 𝐿 is EXP-complete

• EXP-complete languages are not in P

• BOUNDED-HALT is EXP-complete
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EXP-completeness
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P

EXP

EXP-complete

EXP-hard

BOUNDED-HALT



The complexity class NP

• A language 𝐿 is in NP if there is a polynomial-time randomized Turing 

machine 𝑀 such that:

• For every 𝑤 ∈ 𝐿, we have Pr 𝑀 accepts 𝑤 ≠ 0

• For every 𝑤 ∉ 𝐿, we have Pr 𝑀 accepts 𝑤 = 0

• Equivalent: Every 𝑤 ∈ 𝐿 has a certificate of membership, and 

certificates can be verified in (deterministic) polynomial time
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P
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NP



NP-completeness

• A language 𝐿 is NP-complete 

if 𝐿 ∈ NP and every language 

in NP reduces to 𝐿 in 

polynomial time
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P

NP

NP-complete

NP-hard



Circuit satisfiability

• CIRCUIT-SAT = 𝐶 ∶ 𝐶 is a satisfiable circuit

• Key idea: If 𝐿 ∈ P, then not only does 𝐿 have polynomial-size circuits 

(𝐿 ∈ PSIZE), but in fact we can efficiently construct the circuits

42

Theorem: CIRCUIT-SAT is NP-complete



The Cook-Levin Theorem

• Definition: A 𝑘-CNF formula is an AND of ORs of at most 𝑘 literals

• Definition: 𝑘-SAT = { 𝜙 ∶ 𝜙 is a satisfiable 𝑘-CNF formula}

• Using this theorem, we also proved that CLIQUE is NP-complete

• On your homework, you showed, e.g., that 3-COLORABLE is NP-complete
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The Cook-Levin Theorem: 3-SAT is NP-complete



The P vs. NP problem

• We conjecture that P ≠ NP: Solving and verifying are different

• A proof that P = NP would change the world

• *Assuming the proof gives us truly practical algorithms

• We could solve countless important problems in polynomial time 

• Hackers could break our encryption schemes in polynomial time 
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Lessons

• Computation has intrinsic limitations

• Mathematics and computer science form a powerful combination

• Complexity theory enables us to formulate and study profound 

questions

• Questions about the human condition

• Questions about the physical universe
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Thank you!

• Teaching you has been a privilege

• I hope you’ve enjoyed taking the course as much as I’ve enjoyed 

teaching it

• Please fill out the College Course Feedback Form using My.UChicago 

(deadline is May 26)

• See you next week for office hours and the final exam!
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