CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Which problems
can be solved

through computation?

Languages

* A language is a set of strings, all of which are over the same alphabet
* That is, if 2 is an alphabet, then a language over X isaset L € X*

e Examples:

PALINDROMES = {w € {0,1}" : wis the same forward and backward}
BALANCED = {w € {0,1}* : w has equal numbers of zeroes and ones}

PYTHON = the set of valid Python programs (no syntax errors)

Deciding a language

* Let M be a Turing machine with input alphabet X
* Let L be a language over X
* Suppose that M accepts every w € L and M rejects everyw € X \ L

* In this case, we say that M decides L

Example: A TM that decides PALINDROMES

Example: This TM does not decide any language

Languages as a model of problems

* Each language L represents a computational problem: “Given a string w,
determine whether w € L”

* Givenw € {0, 1}*, determine whether w is a palindrome

* Given a text file, determine whether it is a valid Python program

e “Deciding a language” will be our mathematical model of “solving a

problem”

Problems about things other than strings

* OBJECTION: “There are many interesting computational problems in

which the input is something other than a string.”

* For example, consider the primality testing problem: “Given a positive

integer N, determine whether N is prime”

* Does primality testing go beyond the “deciding a language”

framework?

Encoding numbers as strings

« RESPONSE: If N is a nonnegative integer, we let (V) denote the binary

encoding of N, i.e., the standard base-2 representation of N
* Example: (6) = 110. Note that N € N whereas (N) € {0, 1}"

* Primality testing as a language:

PRIMES = {(N) : N is a prime number}

Encoding the input as a string

* If we want to give something to a Turing Coci nest pas une fifie.

Bug e

machine, we must first “encode” it as a string “This is not a pipe.”
(1929 painting by René Magritte)

 The same is true of human computation!

* We say, “Given a positive integer, determine whether it is prime,” but is it

truly possible to “give” someone an abstract concept such as an integer?

* Being pedantic, we could speak more precisely and say, “Given a piece of

text, determine whether it represents/encodes a prime number”

10

Multiple possible encodings

* A problem might be easier or harder depending on how the input is

encoded!

* Example: “Given a non-negative integer N, determine whether N is a
multiple of ten.”

* If N is represented in base ten (decimal), the problem is trivial

* If N is represented in base two (binary), solving the problem requires more effort

11

Integer divisibility

* Here’s another problem: “Given two positive integers, N and M,

determine whether N is a multiple of M.”

< How can we model this problem as a language? >
<A: (NYM): 3K, N =M - K) ><B: (N):3M, 3K, N = M - K) >
< C:{(NY#(M):3K, N=M - K} >< D: {(NY#(M)Y#(K): N = M - K} >

Respond at PollEv.com/whoza or text “whoza” to 22333

12

Encoding a pair of integers as a string

* If N and M are nonnegative integers, then we define

(N,M) = (N)#(M) € {0,1, #}"

13

“Invalid” inputs

* Problem: “Given nonnegative integers N, M, determine whether N is a

multiple of M.”

L ={(N,M) : N,M are nonnegative integers and N is a multiple of M}

m Correct Output Explanation

100#10 Accept 4 is a multiple of 2
101#11 Reject 5 is not a multiple of 3
1#1#0### Reject “Invalid” input

e Convention: We always formulate the language to exclude “invalid” inputs

14

Encoding graphs as strings

* If G is a graph on N vertices, we let (G) denote its adjacency matrix,

unraveled into a string, so (G) € {0, 1}N2

15

Encoding other things as strings

 If X is any mathematical object that can be encoded as a string (a number, a
graph, a polynomial, a function, ...), then we let (X) denote some

“reasonable” encoding of X as a string

* The specific choice of how to encode X can make a difference, but it usually

doesn’t make a big difference, provided we choose something reasonable

* If you are unsure how (X) should be defined in a particular case, ask!

16

Beyond decision problems

* “Deciding a language” will be our mathematical model of “solving a problem”

 OBJECTION: “There are many interesting problems for which the desired

output is something more complicated than a binary yes/no answer.”
 Example: “Sort a given list of integers”
* Example: “Given a graph G, find the largest cligue in G”
* (A clique is a set of vertices that are all connected to one another)

17

Beyond decision problems

* RESPONSE 1: We focus on languages for simplicity’s sake

 RESPONSE 2: In many cases, even if the problem we are interested in is
not a decision problem, we can formulate a related language that
“captures the essence of” the problem
« Example: CLIQUE = {{G, k) : G has a clique of size k}

e More on this later...

18

Which problems
can be solved

through computation?

Mathematical models

* Model of “solving a problem:” deciding a language

* |t's a pretty good model, but admittedly, it does not encompass all possible

computational problems

* Model of “computation:” the Turing machine

* Does this model encompass all possible algorithms?

20

The Church-Turing Thesis

* Let L be a language

Church-Turing Thesis:
There exists an “algorithm” / “procedure” for figuring
out whether a given string is in L if and only if there

exists a Turing machine that decides L.

<«— |ntuitive notion

Mathematically
precise notion

21

Church-Turing Thesis

* The Church-Turing thesis says that the Turing machine model is the

“correct” model of arbitrary computation

* The thesis says that the informal concept of an “algorithm” is

successfully captured by the rigorous definition of a Turing machine

22

Are Turing machines too powerful?

I”

* OBJECTION: “The Turing machine’s infinite tape is unrealistic

* RESPONSE 1: If M decides some language, then on any particular input w, M

only uses a finite amount of space

* RESPONSE 2: We are studying idealized computation

23

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Which problems can be solved through computation?
	Slide 3: Languages
	Slide 4: Deciding a language
	Slide 5: Example: A TM that decides PALINDROMES
	Slide 6: Example: This TM does not decide any language
	Slide 7: Languages as a model of problems
	Slide 8: Problems about things other than strings
	Slide 9: Encoding numbers as strings
	Slide 10: Encoding the input as a string
	Slide 11: Multiple possible encodings
	Slide 12: Integer divisibility
	Slide 13: Encoding a pair of integers as a string
	Slide 14: “Invalid” inputs
	Slide 15: Encoding graphs as strings
	Slide 16: Encoding other things as strings
	Slide 17: Beyond decision problems
	Slide 18: Beyond decision problems
	Slide 19: Which problems can be solved through computation?
	Slide 20: Mathematical models
	Slide 21: The Church-Turing Thesis
	Slide 22: Church-Turing Thesis
	Slide 23: Are Turing machines too powerful?

