CMSC 28100

Introduction to
 Complexity Theory

Spring 2024
Instructor: William Hoza

Which problems

can be solved

through computation?

Languages

- A language is a set of strings, all of which are over the same alphabet
- That is, if Σ is an alphabet, then a language over Σ is a set $L \subseteq \Sigma^{*}$
- Examples:

PALINDROMES $=\left\{w \in\{0,1\}^{*}: w\right.$ is the same forward and backward $\}$
BALANCED $=\left\{w \in\{0,1\}^{*}: w\right.$ has equal numbers of zeroes and ones $\}$
PYTHON $=$ the set of valid Python programs (no syntax errors)

Deciding a language

- Let M be a Turing machine with input alphabet Σ
- Let L be a language over Σ
- Suppose that M accepts every $w \in L$ and M rejects every $w \in \Sigma^{*} \backslash L$
- In this case, we say that M decides L

Example: A TM that decides PALINDROMES

Example: This TM does not decide any language

Languages as a model of problems

- Each language L represents a computational problem: "Given a string w, determine whether $w \in L^{\prime \prime}$
- Given $w \in\{0,1\}^{*}$, determine whether w is a palindrome
- Given a text file, determine whether it is a valid Python program
- "Deciding a language" will be our mathematical model of "solving a problem"

Problems about things other than strings

- OBJECTION: "There are many interesting computational problems in which the input is something other than a string."
- For example, consider the primality testing problem: "Given a positive integer N, determine whether N is prime"
- Does primality testing go beyond the "deciding a language" framework?

Encoding numbers as strings

- RESPONSE: If N is a nonnegative integer, we let $\langle N\rangle$ denote the binary encoding of N, i.e., the standard base-2 representation of N
- Example: $\langle 6\rangle=110$. Note that $N \in \mathbb{N}$ whereas $\langle N\rangle \in\{0,1\}^{*}$
- Primality testing as a language:

$$
\text { PRIMES }=\{\langle N\rangle: N \text { is a prime number }\}
$$

Encoding the input as a string

- If we want to give something to a Turing machine, we must first "encode" it as a string

Ceci n'est pas une pipe.
"This is not a pipe." (1929 painting by René Magritte)

- The same is true of human computation!
- We say, "Given a positive integer, determine whether it is prime," but is it truly possible to "give" someone an abstract concept such as an integer?
- Being pedantic, we could speak more precisely and say, "Given a piece of text, determine whether it represents/encodes a prime number"

Multiple possible encodings

- A problem might be easier or harder depending on how the input is encoded!
- Example: "Given a non-negative integer N, determine whether N is a multiple of ten."
- If N is represented in base ten (decimal), the problem is trivial
- If N is represented in base two (binary), solving the problem requires more effort

Integer divisibility

- Here's another problem: "Given two positive integers, N and M, determine whether N is a multiple of $M . "$

Respond at PollEv.com/whoza or text "whoza" to 22333

Encoding a pair of integers as a string

- If N and M are nonnegative integers, then we define

$$
\langle N, M\rangle=\langle N\rangle \#\langle M\rangle \in\{0,1, \#\}^{*}
$$

"Invalid" inputs

- Problem: "Given nonnegative integers N, M, determine whether N is a multiple of M."
- $L=\{\langle N, M\rangle: N, M$ are nonnegative integers and N is a multiple of $M\}$

Input	Correct Output	Explanation
$100 \# 10$	Accept	4 is a multiple of 2
$101 \# 11$	Reject	5 is not a multiple of 3
1\#1\#0\#\#\#	Reject	"Invalid" input

- Convention: We always formulate the language to exclude "invalid" inputs

Encoding graphs as strings

- If G is a graph on N vertices, we let $\langle G\rangle$ denote its adjacency matrix, unraveled into a string, so $\langle G\rangle \in\{0,1\}^{N^{2}}$

Encoding other things as strings

- If X is any mathematical object that can be encoded as a string (a number, a graph, a polynomial, a function, ...), then we let $\langle X\rangle$ denote some "reasonable" encoding of X as a string
- The specific choice of how to encode X can make a difference, but it usually doesn't make a big difference, provided we choose something reasonable
- If you are unsure how $\langle X\rangle$ should be defined in a particular case, ask!

Beyond decision problems

- "Deciding a language" will be our mathematical model of "solving a problem"
- OBJECTION: "There are many interesting problems for which the desired
output is something more complicated than a binary yes/no answer."
- Example: "Sort a given list of integers"
- Example: "Given a graph G, find the largest clique in G "
- (A clique is a set of vertices that are all connected to one another)

Beyond decision problems

- RESPONSE 1: We focus on languages for simplicity's sake
- RESPONSE 2: In many cases, even if the problem we are interested in is not a decision problem, we can formulate a related language that "captures the essence of" the problem
- Example: CLIQUE $=\{\langle G, k\rangle: G$ has a clique of size $k\}$
- More on this later...

Which problems

can be solved

through computation?

Mathematical models

- Model of "solving a problem:" deciding a language
- It's a pretty good model, but admittedly, it does not encompass all possible computational problems
- Model of "computation:" the Turing machine
- Does this model encompass all possible algorithms?

The Church-Turing Thesis

- Let L be a language

Church-Turing Thesis:

There exists an "algorithm" / "procedure" for figuring out whether a given string is in L if and only if there exists a Turing machine that decides L.

Church-Turing Thesis

- The Church-Turing thesis says that the Turing machine model is the "correct" model of arbitrary computation
- The thesis says that the informal concept of an "algorithm" is successfully captured by the rigorous definition of a Turing machine

Are Turing machines too powerful?

- OBJECTION: "The Turing machine's infinite tape is unrealistic!"
- RESPONSE 1: If M decides some language, then on any particular input w, M only uses a finite amount of space
- RESPONSE 2: We are studying idealized computation

