
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Which problems

can be solved

through computation?

2

Languages

• A language is a set of strings, all of which are over the same alphabet

• That is, if Σ is an alphabet, then a language over Σ is a set 𝐿 ⊆ Σ∗

• Examples:

PALINDROMES = {𝑤 ∈ {0, 1}∗ ∶ 𝑤 is the same forward and backward}

BALANCED = 𝑤 ∈ 0, 1 ∗ ∶ 𝑤 has equal numbers of zeroes and ones

PYTHON = the set of valid Python programs (no syntax errors)

3

Deciding a language

• Let 𝑀 be a Turing machine with input alphabet Σ

• Let 𝐿 be a language over Σ

• Suppose that 𝑀 accepts every 𝑤 ∈ 𝐿 and 𝑀 rejects every 𝑤 ∈ Σ∗ ∖ 𝐿

• In this case, we say that 𝑀 decides 𝐿

4

Example: A TM that decides PALINDROMES

5

𝑞0

𝑟0

𝑟1

ℓ0

ℓ1

ℓ 𝑞reject

𝑞accept

⊔ → L

⊔ → L

0,1 → R

0,1 → R

0,1 ← L
⊔ → R

Example: This TM does not decide any language

6

𝑞0

𝑞accept

⊔ → ⊔, R

𝑞reject

Languages as a model of problems

• Each language 𝐿 represents a computational problem: “Given a string 𝑤,

determine whether 𝑤 ∈ 𝐿”

• Given 𝑤 ∈ {0, 1}∗, determine whether 𝑤 is a palindrome

• Given a text file, determine whether it is a valid Python program

• “Deciding a language” will be our mathematical model of “solving a

problem”

7

Problems about things other than strings

• OBJECTION: “There are many interesting computational problems in

which the input is something other than a string.”

• For example, consider the primality testing problem: “Given a positive

integer 𝑁, determine whether 𝑁 is prime”

• Does primality testing go beyond the “deciding a language”

framework?

8

Encoding numbers as strings

• RESPONSE: If 𝑁 is a nonnegative integer, we let 𝑁 denote the binary

encoding of 𝑁, i.e., the standard base-2 representation of 𝑁

• Example: 6 = 110. Note that 𝑁 ∈ ℕ whereas 𝑁 ∈ {0, 1}∗

• Primality testing as a language:

PRIMES = { 𝑁 ∶ 𝑁 is a prime number}

9

Encoding the input as a string

• If we want to give something to a Turing

machine, we must first “encode” it as a string

• The same is true of human computation!

• We say, “Given a positive integer, determine whether it is prime,” but is it

truly possible to “give” someone an abstract concept such as an integer?

• Being pedantic, we could speak more precisely and say, “Given a piece of

text, determine whether it represents/encodes a prime number”

10

“This is not a pipe.”
(1929 painting by René Magritte)

Multiple possible encodings

• A problem might be easier or harder depending on how the input is

encoded!

• Example: “Given a non-negative integer 𝑁, determine whether 𝑁 is a

multiple of ten.”

• If 𝑁 is represented in base ten (decimal), the problem is trivial

• If 𝑁 is represented in base two (binary), solving the problem requires more effort

11

Integer divisibility

• Here’s another problem: “Given two positive integers, 𝑁 and 𝑀,

determine whether 𝑁 is a multiple of 𝑀.”

12

How can we model this problem as a language?

Respond at PollEv.com/whoza or text “whoza” to 22333

B: 𝑁 ∶ ∃𝑀, ∃𝐾, 𝑁 = 𝑀 ⋅ 𝐾A: 𝑁 𝑀 ∶ ∃𝐾, 𝑁 = 𝑀 ⋅ 𝐾

D: 𝑁 # 𝑀 # 𝐾 ∶ 𝑁 = 𝑀 ⋅ 𝐾C: 𝑁 # 𝑀 ∶ ∃𝐾, 𝑁 = 𝑀 ⋅ 𝐾

Encoding a pair of integers as a string

• If 𝑁 and 𝑀 are nonnegative integers, then we define

𝑁, 𝑀 = 𝑁 #⟨𝑀⟩ ∈ 0, 1, # ∗

13

“Invalid” inputs

• Problem: “Given nonnegative integers 𝑁, 𝑀, determine whether 𝑁 is a

multiple of 𝑀.”

• 𝐿 = { 𝑁, 𝑀 ∶ 𝑁, 𝑀 are nonnegative integers and 𝑁 is a multiple of 𝑀}

• Convention: We always formulate the language to exclude “invalid” inputs
14

Input Correct Output Explanation

100#10 Accept 4 is a multiple of 2

101#11 Reject 5 is not a multiple of 3

1#1#0### Reject “Invalid” input

Encoding graphs as strings

• If 𝐺 is a graph on 𝑁 vertices, we let ⟨𝐺⟩ denote its adjacency matrix,

unraveled into a string, so 𝐺 ∈ {0, 1}𝑁2

15

Encoding other things as strings

• If 𝑋 is any mathematical object that can be encoded as a string (a number, a

graph, a polynomial, a function, …), then we let ⟨𝑋⟩ denote some

“reasonable” encoding of 𝑋 as a string

• The specific choice of how to encode 𝑋 can make a difference, but it usually

doesn’t make a big difference, provided we choose something reasonable

• If you are unsure how ⟨𝑋⟩ should be defined in a particular case, ask!

16

Beyond decision problems

• “Deciding a language” will be our mathematical model of “solving a problem”

• OBJECTION: “There are many interesting problems for which the desired

output is something more complicated than a binary yes/no answer.”

• Example: “Sort a given list of integers”

• Example: “Given a graph 𝐺, find the largest clique in 𝐺”

• (A clique is a set of vertices that are all connected to one another)

17

Beyond decision problems

• RESPONSE 1: We focus on languages for simplicity’s sake

• RESPONSE 2: In many cases, even if the problem we are interested in is

not a decision problem, we can formulate a related language that

“captures the essence of” the problem

• Example: CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a clique of size 𝑘}

• More on this later…

18

Which problems

can be solved

through computation?

19

Mathematical models

• Model of “solving a problem:” deciding a language

• It’s a pretty good model, but admittedly, it does not encompass all possible

computational problems

• Model of “computation:” the Turing machine

• Does this model encompass all possible algorithms?

20

The Church-Turing Thesis

• Let 𝐿 be a language

21

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring

out whether a given string is in 𝐿 if and only if there

exists a Turing machine that decides 𝐿.

Intuitive notion

Mathematically
precise notion

Church-Turing Thesis

• The Church-Turing thesis says that the Turing machine model is the

“correct” model of arbitrary computation

• The thesis says that the informal concept of an “algorithm” is

successfully captured by the rigorous definition of a Turing machine

22

Are Turing machines too powerful?

• OBJECTION: “The Turing machine’s infinite tape is unrealistic!”

• RESPONSE 1: If 𝑀 decides some language, then on any particular input 𝑤, 𝑀

only uses a finite amount of space

• RESPONSE 2: We are studying idealized computation

23

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Which problems can be solved through computation?
	Slide 3: Languages
	Slide 4: Deciding a language
	Slide 5: Example: A TM that decides PALINDROMES
	Slide 6: Example: This TM does not decide any language
	Slide 7: Languages as a model of problems
	Slide 8: Problems about things other than strings
	Slide 9: Encoding numbers as strings
	Slide 10: Encoding the input as a string
	Slide 11: Multiple possible encodings
	Slide 12: Integer divisibility
	Slide 13: Encoding a pair of integers as a string
	Slide 14: “Invalid” inputs
	Slide 15: Encoding graphs as strings
	Slide 16: Encoding other things as strings
	Slide 17: Beyond decision problems
	Slide 18: Beyond decision problems
	Slide 19: Which problems can be solved through computation?
	Slide 20: Mathematical models
	Slide 21: The Church-Turing Thesis
	Slide 22: Church-Turing Thesis
	Slide 23: Are Turing machines too powerful?

