CMSC 28100

Introduction to Complexity Theory

Spring 2024 Instructor: William Hoza

The Church-Turing Thesis

• Let L be a language

Church-Turing Thesis:

There exists an "algorithm" / "procedure" for figuring

out whether a given string is in *L* if and only if there

exists a Turing machine that decides L.

Intuitive notion
 Mathematically precise notion

Are Turing machines too powerful?

- **OBJECTION:** "The Turing machine's infinite tape is unrealistic!"
- **RESPONSE 1:** If *M* decides some language, then on any particular input *w*, *M* only uses a finite amount of space
- **RESPONSE 2:** We are studying idealized computation
- **RESPONSE 3:** We're especially focused on impossibility results, so it's better to err on the side of making the model extra powerful

Are Turing machines powerful enough?

- **OBJECTION:** "To encompass all possible algorithms, we should add various bells and whistles to the Turing machine model."
- Example: Let's define a left-right-stationary Turing machine just like an ordinary Turing machine, except now the transition function has the form $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$
- S means the head does not move in this step (prohibited if we see \diamond)
- (Exercise: Rigorously define NEXT, accepting, rejecting, etc.)

- The left-right-stationary Turing machine model poses a challenge to the Church-Turing thesis, because the model is still realistic, even though we added an extra feature
- Does the Church-Turing thesis survive this challenge?
- Yes, because the left-right-stationary Turing machine model is equivalent to the original Turing machine model, in the following sense:

• Let *L* be a language

Theorem: There exists a left-right-stationary TM that decides Lif and only if there exists a TM that decides L

• **Proof:** The (⇐) direction is trivial, because a TM can be considered a

left-right-stationary TM that just happens to never use S

- Idea of the proof of (\Rightarrow) : Simulate S by doing L followed by R
- Details: Let $M = (Q, \Sigma, \Gamma, \Diamond, \sqcup, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ be a

left-right-stationary TM that decides L

• New TM: $M' = (Q', \Sigma, \Gamma, \Diamond, \sqcup, \delta', q_0, q_{\text{accept}}, q_{\text{reject}})$

• New set of states: $Q' = Q \cup \{\underline{q} : q \in Q\}$, i.e., two disjoint copies of Q

- New transition function $\delta': Q' \times \Gamma \to Q' \times \Gamma \times \{L, R\}$ given by:
 - If $\delta(q, b) = (q', b', L)$, then $\delta'(q, b) = \delta(q, b)$
 - If $\delta(q, b) = (q', b', \mathbb{R})$, then $\delta'(q, b) = \delta(q, b)$
 - If $\delta(q, b) = (q', b', S)$, then $\delta'(q, b) = (\underline{q'}, b', L)$
 - For every q and b, we let $\delta'(\underline{q}, b) = (q, b, R)$
- Exercise: Rigorously prove that M' decides L

The Church-Turing Thesis

• Let *L* be a language

Church-Turing Thesis:

There exists an "algorithm" / "procedure" for figuring

out whether a given string is in L if and only if there

exists a Turing machine that decides L.

Mathematically precise notion

Intuitive notion

Theorem: There exists a k-tape TM that decides L if and only if there exists a 1-tape TM that decides L

Simulating k tapes with 1 tape

a

- Idea: Pack a bunch of data into each cell
- Store "simulated heads" on the tape, along with k "simulated symbols" in each cell

Simulating k tapes with 1 tape

• Idea: Pack a bunch of data into

each cell

 Store "simulated heads" on the tape, along with k "simulated symbols" in each cell

• The one "real head" will scan back and forth, updating the simulated heads' locations and the simulated tape contents. (Details on the next slides)

Simulating k tapes with 1 tape

- Let $M = (Q, \Sigma, \Gamma, \Diamond, \sqcup, \delta, q_0, q_{accept}, q_{reject})$ be a k-tape Turing machine that decides L
- We will define a 1-tape Turing machine

 $M' = (Q', \Sigma, \Gamma', \Diamond, \sqcup, \delta', q'_0, q_{\text{accept}}, q_{\text{reject}})$

that also decides L

Simulating k tapes with 1 tape: Alphabet

- Let $\Lambda = \Gamma \cup \{\underline{b} : b \in \Gamma\}$, i.e., two disjoint copies of Γ
 - Interpretation: An underline indicates the presence of a simulated head

• New alphabet:
$$\Gamma' = \{\diamondsuit, \sqcup\} \cup \left\{ \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix} : b_1, \dots, b_k \in \Lambda \right\}$$

• Interpretation: One symbol in Γ' is one "simulated column" of M

• Identify each input symbol
$$b \in \Sigma$$
 with the new symbol $\begin{pmatrix} b \\ \Box \\ \vdots \\ \Box \end{pmatrix}$, so $\Sigma \subseteq \Gamma'$

Simulating k tapes with 1 tape: Head statuses

- At each moment, each simulated head will have one of the following statuses:
 - " \rightarrow b, D" where $b \in \Gamma$ and $D \in \{L, R, S\}$
 - Interpretation: The simulated head needs to write *b* and move in direction *D*

• Interpretation: The simulated head is not currently depicted on the real tape; the simulated head's location is currently the same as the real head's location

• " $b \rightarrow$ " where $b \in \Gamma$

• Interpretation: In the next simulated step, the simulated head will read b

Simulating k tapes with 1 tape: Head statuses

• Let Ω be the set of all possible statuses for a single simulated head:

$$\Omega = \{ " \to b, D" : b \in \Gamma, D \in \{L, R, S\} \}$$
$$\cup \{ " \textcircled{\baselineskip} " \}$$
$$\cup \{ "b \to " : b \in \Gamma \}$$

Simulating k tapes with 1 tape: States

• New state set:

$$Q' = \left\{ q_{\text{accept}}, q_{\text{reject}} \right\} \cup \left\{ \begin{pmatrix} s_1 \\ \vdots \\ s_k \end{pmatrix}_{q, D} : s_1, \dots, s_k \in \Omega; \quad q \in Q; \quad D \in \{L, R\} \right\}$$

- Interpretation:
 - Simulated head *j* has status *s_i*
 - The simulated machine is in state q
 - The one real head is making a pass over the tape in direction D

Simulating k tapes with 1 tape: Start state

• New start state:

$$q'_{0} = \begin{pmatrix} " & & " \\ \vdots \\ " & & " \end{pmatrix}_{q_{0}, \mathbf{R}}$$

• The new transition function will have the form

 $\delta' \colon Q' \times \Gamma' \to Q' \times \Gamma' \times \{L, R\}$

• Let
$$\delta' \left(\begin{pmatrix} s_1 \\ \vdots \\ s_k \end{pmatrix}_{q,D}, \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix} \right) = \left(\begin{pmatrix} s'_1 \\ \vdots \\ s'_k \end{pmatrix}_{q,D}, \begin{pmatrix} b'_1 \\ \vdots \\ b'_k \end{pmatrix}, D \right)$$
 where s'_j, b'_j are defined by:

• If $s_i = " \textcircled{}":$ Let $b'_j = b_j$

- If $s_i = " \rightarrow c_i$, S" and b_i has an underline:
- Let $b'_i = c_j$

Let $b'_i = c_i$

and
$$s'_j = "b_j \rightarrow "$$

and
$$s'_j = "c_j \rightarrow "$$

and $s'_i = " \textcircled{P} "$

- If $s_i = " \rightarrow c_i$, D" and b_i has an underline:
- In all other cases:

Let
$$b'_j = b_j$$
 and $s'_j = s_j$

• Let
$$\delta' \left(\begin{pmatrix} s_1 \\ \vdots \\ s_k \end{pmatrix}_{q, \mathbf{R}}, \sqcup \right) = \left(\begin{pmatrix} s'_1 \\ \vdots \\ s'_k \end{pmatrix}_{q, \mathbf{L}}, \begin{pmatrix} b'_1 \\ \vdots \\ b'_k \end{pmatrix}, \mathbf{L} \right)$$
 where s'_j, b'_j are defined by:
• If $s_i = \# \langle \widehat{\mathbf{D}} \rangle''_i$, $i = 1, \dots, n$ and $s' = \# \cup \infty$

- If $s_j = " \textcircled{s} "$: Let $b_j = \coprod$ and $s_j = `` \sqcup \to ``$
- In all other cases: Let $b'_j = \sqcup$ and $s'_j = s_j$

- What do we do when we see \Diamond ? Let $s_1, \ldots, s_k \in \Omega$ (head statuses) and let $q \in Q$
- Assume that $\forall j$, either $s_j = "b_j \rightarrow "$ or $s_j = " \textcircled{P}"$. In the latter case, let $b_j = \Diamond$

• Let
$$(q', c_1, ..., c_k, D_1, ..., D_k) = \delta(q, b_1, ..., b_k)$$

• If
$$s_j = "b_j \rightarrow "$$
, let $s'_j = " \rightarrow c_j$, D_j ". If $s_j = " \textcircled{P}$ ", let $s'_j = " \textcircled{P}$ "

• Let
$$\delta' \left(\begin{pmatrix} s_1 \\ \vdots \\ s_k \end{pmatrix}_{q, \mathbf{L}}, \diamond \right) = q'$$
 if q' is a halting state and $\left(\begin{pmatrix} s_1' \\ \vdots \\ s_k' \end{pmatrix}_{q', \mathbf{R}}, \diamond, \mathbf{R} \right)$ otherwise