CMSC 28100

Introduction to
 Complexity Theory

Spring 2024
Instructor: William Hoza

The Church-Turing Thesis

- Let L be a language

Church-Turing Thesis:

There exists an "algorithm" / "procedure" for figuring out whether a given string is in L if and only if there exists a Turing machine that decides L.

Are Turing machines too powerful?

- OBJECTION: "The Turing machine’s infinite tape is unrealistic!"
- RESPONSE 1: If M decides some language, then on any particular input w, M only uses a finite amount of space
- RESPONSE 2: We are studying idealized computation
- RESPONSE 3: We're especially focused on impossibility results, so it's better to err on the side of making the model extra powerful

Are Turing machines powerful enough?

- OBJECTION: "To encompass all possible algorithms, we should add various bells and whistles to the Turing machine model."
- Example: Let's define a left-right-stationary Turing machine just like an ordinary Turing machine, except now the transition function has the form $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}, \mathrm{S}\}$
- S means the head does not move in this step (prohibited if we see \diamond)
- (Exercise: Rigorously define NEXT, accepting, rejecting, etc.)

Left-right-stationary Turing machines

- The left-right-stationary Turing machine model poses a challenge to the Church-Turing thesis, because the model is still realistic, even though we added an extra feature
- Does the Church-Turing thesis survive this challenge?
- Yes, because the left-right-stationary Turing machine model is equivalent to the original Turing machine model, in the following sense:

Left-right-stationary Turing machines

- Let L be a language

Theorem: There exists a left-right-stationary TM that decides L
if and only if there exists a TM that decides L

- Proof: The (\Leftarrow) direction is trivial, because a TM can be considered a left-right-stationary TM that just happens to never use S

Left-right-stationary Turing machines

- Idea of the proof of (\Rightarrow) : Simulate S by doing L followed by R
- Details: Let $M=\left(Q, \Sigma, \Gamma, \diamond, \sqcup, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be a left-right-stationary TM that decides L
- New TM: $M^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma, \diamond, \sqcup, \delta^{\prime}, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$
- New set of states: $Q^{\prime}=Q \cup\{\underline{q}: q \in Q\}$, i.e., two disjoint copies of Q

Left-right-stationary Turing machines

- New transition function $\delta^{\prime}: Q^{\prime} \times \Gamma \rightarrow Q^{\prime} \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$ given by:
- If $\delta(q, b)=\left(q^{\prime}, b^{\prime}, \mathrm{L}\right)$, then $\delta^{\prime}(q, b)=\delta(q, b)$
- If $\delta(q, b)=\left(q^{\prime}, b^{\prime}, \mathrm{R}\right)$, then $\delta^{\prime}(q, b)=\delta(q, b)$
- If $\delta(q, b)=\left(q^{\prime}, b^{\prime}, \mathrm{S}\right)$, then $\delta^{\prime}(q, b)=\left(\underline{q}^{\prime}, b^{\prime}, \mathrm{L}\right)$
- For every q and b, we let $\delta^{\prime}(\underline{q}, b)=(q, b, \mathrm{R})$
- Exercise: Rigorously prove that M^{\prime} decides L

The Church-Turing Thesis

- Let L be a language

Church-Turing Thesis:

There exists an "algorithm" / "procedure" for figuring out whether a given string is in L if and only if there exists a Turing machine that decides L.

Multi-tape Turing

- Another TM variant: " k-tape

B: The machine's state and the symbols observed by all heads

D: The machine's state and the
C: Head 1's state and the symbols
observed by all heads symbol observed by head 1

- Transition function:

$$
\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{\mathrm{L}, \mathrm{R}, \mathrm{~S}\}^{k}
$$

- (Exercise: Rigorously define acceptance, rejection, etc.)

A: Store the location data in the machine's state

C: Use special symbols to mark the cells containing simulated heads

B: Ensure that the real/simulated heads' locations are always equal

D: Store the location data in a single dedicated tape cell

Theorem: There exists a k-tape TM that decides L if and only if

 there exists a 1-tape TM that decides L
Simulating k tapes with 1 tape

- Idea: Pack a bunch of data into each cell
- Store "simulated heads" on the tape, along with k "simulated symbols" in each cell

Simulating k tapes with 1 tape

- Idea: Pack a bunch of data into each cell
- Store "simulated heads" on the tape, along with k "simulated symbols" in each cell

- The one "real head" will scan back and forth, updating the simulated heads' locations and the simulated tape contents. (Details on the next slides)

Simulating k tapes with 1 tape

- Let $M=\left(Q, \Sigma, \Gamma, \diamond, \sqcup, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be a k-tape Turing machine that decides L
- We will define a 1 -tape Turing machine

$$
M^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma^{\prime}, \diamond, \sqcup, \delta^{\prime}, q_{0}^{\prime}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$

that also decides L

Simulating k tapes with 1 tape: Alphabet

- Let $\Lambda=\Gamma \cup\{\underline{b}: b \in \Gamma\}$, i.e., two disjoint copies of Γ
- Interpretation: An underline indicates the presence of a simulated head
- New alphabet: $\Gamma^{\prime}=\{\diamond, \sqcup\} \cup\left\{\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{k}\end{array}\right): b_{1}, \ldots, b_{k} \in \Lambda\right\}$
- Interpretation: One symbol in Γ^{\prime} is one "simulated column" of M
- Identify each input symbol $b \in \Sigma$ with the new symbol $\left(\begin{array}{c}b \\ \vdots \\ \vdots \\ \vdots\end{array}\right)$, so $\Sigma \subseteq \Gamma^{\prime}$

Simulating k tapes with 1 tape: Head statuses

- At each moment, each simulated head will have one of the following statuses:
- " $\rightarrow b, D$ " where $b \in \Gamma$ and $D \in\{\mathrm{~L}, \mathrm{R}, \mathrm{S}\}$
- Interpretation: The simulated head needs to write b and move in direction D
-"
- Interpretation: The simulated head is not currently depicted on the real tape; the simulated head's location is currently the same as the real head's location
- " $b \rightarrow$ " where $b \in \Gamma$
- Interpretation: In the next simulated step, the simulated head will read b

Simulating k tapes with 1 tape: Head statuses

- Let Ω be the set of all possible statuses for a single simulated head:

$$
\begin{aligned}
\Omega=\{" & \left.\rightarrow b, D^{\prime \prime}: b \in \Gamma, D \in\{\mathrm{~L}, \mathrm{R}, \mathrm{~S}\}\right\} \\
& \cup\left\{" \mathrm{D}^{\prime} "\right\} \\
& \cup\{" b \rightarrow ": b \in \Gamma\}
\end{aligned}
$$

Simulating k tapes with 1 tape: States

- New state set:

$$
Q^{\prime}=\left\{q_{\text {accept }}, q_{\text {reject }}\right\} \cup\left\{\left(\begin{array}{c}
s_{1} \\
\vdots \\
s_{k}
\end{array}\right)_{q, D}: s_{1}, \ldots, s_{k} \in \Omega ; \quad q \in Q ; \quad D \in\{\mathrm{~L}, \mathrm{R}\}\right\}
$$

- Interpretation:
- Simulated head j has status s_{j}
- The simulated machine is in state q
- The one real head is making a pass over the tape in direction D

Simulating k tapes with 1 tape: Start state

- New start state:

$$
q_{0}^{\prime}=\left(\begin{array}{c}
" S " \\
\vdots \\
" B
\end{array}\right)_{q_{0}, \mathrm{R}}
$$

Simulating k tapes with 1 tape: Transitions

- The new transition function will have the form

$$
\delta^{\prime}: Q^{\prime} \times \Gamma^{\prime} \rightarrow Q^{\prime} \times \Gamma^{\prime} \times\{\mathrm{L}, \mathrm{R}\}
$$

Simulating k tapes with 1 tape: Transitions

- Let $\delta^{\prime}\left(\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{k}\end{array}\right)_{q, D},\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{k}\end{array}\right)\right)=\left(\left(\begin{array}{c}s_{1}^{\prime} \\ \vdots \\ s_{k}^{\prime}\end{array}\right)_{q, D},\left(\begin{array}{c}b_{1}^{\prime} \\ \vdots \\ b_{k}^{\prime}\end{array}\right), D\right)$ where $s_{j}^{\prime}, b_{j}^{\prime}$ are defined by:
- If $s_{j}=$ " B^{2} ":

$$
\text { Let } b_{j}^{\prime}=\underline{b_{j}} \quad \text { and } s_{j}^{\prime}=" b_{j} \rightarrow "
$$

- If $s_{j}=$ " $\rightarrow c_{j}, \mathrm{~S}$ " and b_{j} has an underline: Let $b_{j}^{\prime}=\underline{c_{j}}$
- If $s_{j}=" \rightarrow c_{j}, D$ " and b_{j} has an underline: Let $b_{j}^{\prime}=c_{j}$ and $s_{j}^{\prime}=" c_{j} \rightarrow "$
- In all other cases:

$$
\text { Let } b_{j}^{\prime}=b_{j} \quad \text { and } s_{j}^{\prime}=s_{j}
$$

Simulating k tapes with 1 tape: Transitions

- Let $\delta^{\prime}\left(\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{k}\end{array}\right)_{q, \mathrm{R}}, \sqcup\right)=\left(\left(\begin{array}{c}s_{1}^{\prime} \\ \vdots \\ s_{k}^{\prime}\end{array}\right)_{q, \mathrm{~L}},\left(\begin{array}{c}b_{1}^{\prime} \\ \vdots \\ b_{k}^{\prime}\end{array}\right), \mathrm{L}\right)$ where $s_{j}^{\prime}, b_{j}^{\prime}$ are defined by:

Let $b_{j}^{\prime}=\underline{\mathrm{U}}$
and $s_{j}^{\prime}=" \sqcup \rightarrow "$
- In all other cases:

$$
\text { Let } b_{j}^{\prime}=\sqcup \quad \text { and } s_{j}^{\prime}=s_{j}
$$

Simulating k tapes with 1 tape: Transitions

- What do we do when we see \diamond ? Let $s_{1}, \ldots, s_{k} \in \Omega$ (head statuses) and let $q \in Q$
- Assume that $\forall j$, either $s_{j}=$ " $b_{j} \rightarrow$ " or $s_{j}=$ " $\%$ ". In the latter case, let $b_{j}=\diamond$
- Let $\left(q^{\prime}, c_{1}, \ldots, c_{k}, D_{1}, \ldots, D_{k}\right)=\delta\left(q, b_{1}, \ldots, b_{k}\right)$

- Let $\delta^{\prime}\left(\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{k}\end{array}\right)_{q, \mathrm{~L}}, \diamond\right)=q^{\prime}$ if q^{\prime} is a halting state and $\left(\left(\begin{array}{c}s_{1}^{\prime} \\ \vdots \\ s_{k}^{\prime}\end{array}\right)_{q^{\prime}, \mathrm{R}}, \diamond, \mathrm{R}\right)$ otherwise

