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The Church-Turing Thesis

• Let 𝐿 be a language
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Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring 

out whether a given string is in 𝐿 if and only if there 

exists a Turing machine that decides 𝐿.

Intuitive notion

Mathematically 
precise notion



Are Turing machines too powerful?

• OBJECTION: “The Turing machine’s infinite tape is unrealistic!”

• RESPONSE 1: If 𝑀 decides some language, then on any particular input 𝑤, 𝑀

only uses a finite amount of space

• RESPONSE 2: We are studying idealized computation

• RESPONSE 3: We’re especially focused on impossibility results, so it’s better 

to err on the side of making the model extra powerful
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Are Turing machines powerful enough?

• OBJECTION: “To encompass all possible algorithms, we should add various 

bells and whistles to the Turing machine model.”

• Example: Let’s define a left-right-stationary Turing machine just like an 

ordinary Turing machine, except now the transition function has the form 

𝛿: 𝑄 × Γ → 𝑄 × Γ × {L, R, S}

• S means the head does not move in this step (prohibited if we see ♢)

• (Exercise: Rigorously define NEXT, accepting, rejecting, etc.)
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Left-right-stationary Turing machines

• The left-right-stationary Turing machine model poses a challenge to the 

Church-Turing thesis, because the model is still realistic, even though we 

added an extra feature

• Does the Church-Turing thesis survive this challenge?

• Yes, because the left-right-stationary Turing machine model is equivalent

to the original Turing machine model, in the following sense:
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Left-right-stationary Turing machines

• Let 𝐿 be a language

• Proof: The ⇐ direction is trivial, because a TM can be considered a 

left-right-stationary TM that just happens to never use S
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Theorem: There exists a left-right-stationary TM that decides 𝐿 

if and only if there exists a TM that decides 𝐿



Left-right-stationary Turing machines

• Idea of the proof of ⇒ : Simulate S by doing L followed by R

• Details: Let 𝑀 = 𝑄, Σ, Γ, ♢,⊔, 𝛿, 𝑞0, 𝑞accept, 𝑞reject be a 

left-right-stationary TM that decides 𝐿

• New TM: 𝑀′ = 𝑄′, Σ, Γ, ♢,⊔, 𝛿′, 𝑞0, 𝑞accept, 𝑞reject

• New set of states: 𝑄′ = 𝑄 ∪ 𝑞 ∶ 𝑞 ∈ 𝑄 , i.e., two disjoint copies of 𝑄
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Left-right-stationary Turing machines

• New transition function 𝛿′: 𝑄′ × Γ → 𝑄′ × Γ × L, R given by:

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, L , then 𝛿′ 𝑞, 𝑏 = 𝛿(𝑞, 𝑏)

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, R , then 𝛿′ 𝑞, 𝑏 = 𝛿(𝑞, 𝑏)

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, S , then 𝛿′ 𝑞, 𝑏 = 𝑞′, 𝑏′, L

• For every 𝑞 and 𝑏, we let 𝛿′ 𝑞, 𝑏 = 𝑞, 𝑏, R

• Exercise: Rigorously prove that 𝑀′ decides 𝐿
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The Church-Turing Thesis

• Let 𝐿 be a language
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Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring 

out whether a given string is in 𝐿 if and only if there 

exists a Turing machine that decides 𝐿.

Intuitive notion

Mathematically 
precise notion



Multi-tape Turing machines

• Another TM variant: “𝑘-tape TM”

• Transition function:

𝛿: 𝑄 × Γ𝑘 → 𝑄 × Γ𝑘 × {L, R, S}𝑘

• (Exercise: Rigorously define 

acceptance, rejection, etc.)
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1 1 0♢ ⊔ ⊔

♢ 0 # 1 $ ⊔

𝑞

In each step, what determines the actions of head 1?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: Head 1’s state and the symbols
observed by all heads

A: Head 1’s state and the symbol
observed by head 1

D: The machine’s state and the
symbol observed by head 1

B: The machine’s state and the
symbols observed by all heads



Multi-tape Turing machines

• Let 𝑘 be any positive integer and let 𝐿 be a language
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Theorem: There exists a 𝑘-tape TM that decides 𝐿 if and only if 

there exists a 1-tape TM that decides 𝐿

How should we keep track of the locations of the simulated heads?

Respond at PollEv.com/whoza or text “whoza” to 22333 

B: Ensure that the real/simulated
heads’ locations are always equal

A: Store the location data in the
machine’s state

D: Store the location data in a
single dedicated tape cell

C: Use special symbols to mark the
cells containing simulated heads



• Idea: Pack a bunch of data into

each cell

• Store “simulated heads” on the

tape, along with 𝑘 “simulated

symbols” in each cell 

Simulating 𝑘 tapes with 1 tape
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1 1 0♢ ⊔ ⊔

♢ 0 # 1 $ ⊔

𝑞



• Idea: Pack a bunch of data into

each cell

• Store “simulated heads” on the

tape, along with 𝑘 “simulated

symbols” in each cell

• The one “real head” will scan back and forth, updating the simulated heads’ 

locations and the simulated tape contents. (Details on the next slides)

Simulating 𝑘 tapes with 1 tape
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1 1 0♢ ⊔ ⊔

♢ 0 # 1 $ ⊔

0

⊔



Simulating 𝑘 tapes with 1 tape

• Let 𝑀 = 𝑄, Σ, Γ, ♢,⊔, 𝛿, 𝑞0, 𝑞accept, 𝑞reject be a 𝑘-tape Turing 

machine that decides 𝐿

• We will define a 1-tape Turing machine

𝑀′ = 𝑄′, Σ, Γ′, ♢,⊔, 𝛿′, 𝑞0
′ , 𝑞accept, 𝑞reject

that also decides 𝐿
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Simulating 𝑘 tapes with 1 tape: Alphabet

• Let Λ = Γ ∪ പ𝑏 ∶ 𝑏 ∈ Γ , i.e., two disjoint copies of Γ

• Interpretation: An underline indicates the presence of a simulated head

• New alphabet: Γ′ = ♢,⊔ ∪
𝑏1
⋮
𝑏𝑘

∶ 𝑏1, … , 𝑏𝑘 ∈ Λ

• Interpretation: One symbol in Γ′ is one “simulated column” of 𝑀

• Identify each input symbol 𝑏 ∈ Σ with the new symbol 

𝑏
⊔
⋮
⊔

, so Σ ⊆ Γ′
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Simulating 𝑘 tapes with 1 tape: Head statuses

• At each moment, each simulated head will have one of the following statuses:

• “→ 𝑏,𝐷” where 𝑏 ∈ Γ and 𝐷 ∈ L, R, S

• Interpretation: The simulated head needs to write 𝑏 and move in direction 𝐷

• “ ”

• Interpretation: The simulated head is not currently depicted on the real tape; the simulated head’s 

location is currently the same as the real head’s location

• “𝑏 →” where 𝑏 ∈ Γ

• Interpretation: In the next simulated step, the simulated head will read 𝑏
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Simulating 𝑘 tapes with 1 tape: Head statuses

• Let Ω be the set of all possible statuses for a single simulated head:

Ω = “ → 𝑏,𝐷” ∶ 𝑏 ∈ Γ, 𝐷 ∈ L, R, S

∪ “ ”

∪ “𝑏 → ” ∶ 𝑏 ∈ Γ
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Simulating 𝑘 tapes with 1 tape: States

• New state set:

𝑄′ = 𝑞accept, 𝑞reject ∪

𝑠1
⋮
𝑠𝑘 𝑞,𝐷

∶ 𝑠1, … , 𝑠𝑘 ∈ Ω; 𝑞 ∈ 𝑄; 𝐷 ∈ L, R

• Interpretation:

• Simulated head 𝑗 has status 𝑠𝑗

• The simulated machine is in state 𝑞

• The one real head is making a pass over the tape in direction 𝐷
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Simulating 𝑘 tapes with 1 tape: Start state

• New start state:

𝑞0
′ =

“ ”
⋮

“ ”
𝑞0,R
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Simulating 𝑘 tapes with 1 tape: Transitions

• The new transition function will have the form

𝛿′: 𝑄′ × Γ′ → 𝑄′ × Γ′ × L, R
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Simulating 𝑘 tapes with 1 tape: Transitions

• Let 𝛿′
𝑠1
⋮
𝑠𝑘 𝑞,𝐷

,
𝑏1
⋮
𝑏𝑘

=
𝑠1
′

⋮
𝑠𝑘
′

𝑞,𝐷

,
𝑏1
′

⋮
𝑏𝑘
′

, 𝐷 where 𝑠𝑗
′, 𝑏𝑗

′ are defined by:

• If 𝑠𝑗 = “ ”: Let 𝑏𝑗
′ = 𝑏𝑗 and 𝑠𝑗

′ = “𝑏𝑗 →”

• If 𝑠𝑗 = “→ 𝑐𝑗 , S” and 𝑏𝑗 has an underline: Let 𝑏𝑗
′ = 𝑐𝑗 and 𝑠𝑗

′ = “𝑐𝑗 →”

• If 𝑠𝑗 = “→ 𝑐𝑗 , 𝐷” and 𝑏𝑗 has an underline: Let 𝑏𝑗
′ = 𝑐𝑗 and 𝑠𝑗

′ = “ ”

• In all other cases: Let 𝑏𝑗
′ = 𝑏𝑗 and 𝑠𝑗

′ = 𝑠𝑗
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Simulating 𝑘 tapes with 1 tape: Transitions

• Let 𝛿′
𝑠1
⋮
𝑠𝑘 𝑞,R

, ⊔ =
𝑠1
′

⋮
𝑠𝑘
′

𝑞,L

,
𝑏1
′

⋮
𝑏𝑘
′

, L where 𝑠𝑗
′, 𝑏𝑗

′ are defined by:

• If 𝑠𝑗 = “ ”: Let 𝑏𝑗
′ =⊔ and 𝑠𝑗

′ = “ ⊔→ ”

• In all other cases: Let 𝑏𝑗
′ =⊔ and 𝑠𝑗

′ = 𝑠𝑗
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Simulating 𝑘 tapes with 1 tape: Transitions

• What do we do when we see ♢? Let 𝑠1, … , 𝑠𝑘 ∈ Ω (head statuses) and let 𝑞 ∈ 𝑄

• Assume that ∀𝑗, either 𝑠𝑗 = “𝑏𝑗 → ” or 𝑠𝑗 = “ ”. In the latter case, let 𝑏𝑗 = ♢

• Let 𝑞′, 𝑐1, … , 𝑐𝑘 , 𝐷1, … , 𝐷𝑘 = 𝛿 𝑞, 𝑏1, … , 𝑏𝑘

• If 𝑠𝑗 = “𝑏𝑗 → ”, let 𝑠𝑗
′ = “ → 𝑐𝑗 , 𝐷𝑗”. If 𝑠𝑗 = “ ”, let 𝑠𝑗

′ = “ ”

• Let 𝛿′
𝑠1
⋮
𝑠𝑘 𝑞,L

, ♢ = 𝑞′ if 𝑞′ is a halting state and 
𝑠1
′

⋮
𝑠𝑘
′

𝑞′,R

, ♢, R otherwise
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