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The Church-Turing Thesis

* Let L be a language

Church-Turing Thesis:
There exists an “algorithm” / “procedure” for figuring «—— Intuitive notion
out whether a given string is in L if and only if there

. . . . Mathematically
exists a Turing machine that decides L. T precise notion




Are Turing machines too powerful?

I”

* OBJECTION: “The Turing machine’s infinite tape is unrealistic

* RESPONSE 1: If M decides some language, then on any particular input w, M

only uses a finite amount of space
* RESPONSE 2: We are studying idealized computation

 RESPONSE 3: We're especially focused on impossibility results, so it’s better

to err on the side of making the model extra powerful



Are Turing machines powerful enough?

* OBJECTION: “To encompass all possible algorithms, we should add various

I”

bells and whistles to the Turing machine mode

* Example: Let’s define a left-right-stationary Turing machine just like an

ordinary Turing machine, except now the transition function has the form

5:9 xXTI'->Q XTI x{L,R,S}
* S means the head does not move in this step (prohibited if we see <)

* (Exercise: Rigorously define NEXT, accepting, rejecting, etc.)



Left-right-stationary Turing machines

* The left-right-stationary Turing machine model poses a challenge to the
Church-Turing thesis, because the model is still realistic, even though we

added an extra feature
* Does the Church-Turing thesis survive this challenge?

* Yes, because the left-right-stationary Turing machine model is equivalent

to the original Turing machine model, in the following sense:



Left-right-stationary Turing machines

* Let L be alanguage

Theorem: There exists a left-right-stationary TM that decides L

if and only if there exists a TM that decides L

* Proof: The (&) direction is trivial, because a TM can be considered a

left-right-stationary TM that just happens to never use S



Left-right-stationary Turing machines

* |dea of the proof of (=): Simulate S by doing L followed by R

* Details: Let M = (Q,Z, [, o,U, 0,90, Qaccept qreject) be a
left-right-stationary TM that decides L

* New TM: M’ = (QI; Z; F; <>;U; 5’» do, Qacceptr qreject)

* New set of states: Q' = Q U {q 1 q € Q}, i.e., two disjoint copies of Q



Left-right-stationary Turing machines

* New transition function 6": Q' X I' > Q' X I" X {L, R} given by:
* If6(q,b) = (q',b", L), then 6'(q, b) = 5(q, b)
* If6(q,b) = (q',b’,R),then 6'(q,b) = 6(q, b)

+ 1f8(q,b) = (q',b",5), then 8"(q,b) = (q', ', L)

* For every g and b, we let §' (g, b) = (q,b,R)

* Exercise: Rigorously prove that M’ decides L



The Church-Turing Thesis

* Let L be a language

Church-Turing Thesis:
There exists an “algorithm” / “procedure” for figuring «—— Intuitive notion
out whether a given string is in L if and only if there

. . . . Mathematically
exists a Turing machine that decides L. T precise notion




In each step, what determines the actions of head 1?

Multi-tape Turmg< D
A: Head 1’s state and the symbol B: The machine’s state and the
observed by head 1 symbols observed by all heads

° Another TM V3 ria nt: ”k_ta pe < C: Head 1’s state and the symbols>< D: The machine’s state and the

observed by all heads symbol observed by head 1

° Tra nsition fu nCtiOn: Respond at PoIIEv.c]cim/whoza or text “whoza” to 22333

Q

1‘0

LI‘IJ

5:Q0 xT* - Q xT* x {L,R, S}*

* (Exercise: Rigorously define

acceptance, rejection, etc.)




<How should we keep track of the locations of the simulated heads?>

B: Ensure that the real/simulated
heads’ locations are always equal

A: Store the location data in the
machine’s state

Multi-tape Tu ring<

C: Use special symbols to mark th>< D: Store the location data in a

D
D

° Let k be any positive intE<Ce”S containing simulated heads single dedicated tape cell

Respond at PollEv.com/whoza or text “whoza” to 22333

Theorem: There exists a k-tape TM that decides L if and only if

there exists a 1-tape TM that decides L
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Simulating k tapes with 1 tape

e |[dea: Pack a bunch of data into

each cell O 1

e Store “simulated heads” on the

tape, along with k “simulated

symbols” in each cell o 0
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Simulating k tapes with 1 tape

e |[dea: Pack a bunch of data into

each cell O ()] 1 0 L L
A
* Store “simulated heads” on the O 0 It 1 S
A

tape, along with k “simulated A

symbols” in each cell

* The one “real head” will scan back and forth, updating the simulated heads’

locations and the simulated tape contents. (Details on the next slides)



Simulating k tapes with 1 tape

*letM = (Q, %, T, 0,U,0,490, Qaccepts qreject) be a k-tape Turing

machine that decides L

* We will define a 1-tape Turing machine

M’ = (Q,: %I, 0,6, 616; Qaccept’ Qreject)
that also decides L
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Simulating k tapes with 1 tape: Alphabet

letA=TU{b:b €T} i.e., two disjoint copies of T

* Interpretation: An underline indicates the presence of a simulated head

b,
* New alphabet: ' = {O,U} U {( : ) : by, ..., by € A}
by,

* Interpretation: One symbol in I’ is one “simulated column” of M

b
* [dentify each input symbol b € X with the new symbol LI ,S0x C I

L
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Simulating k tapes with 1 tape: Head statuses

* At each moment, each simulated head will have one of the following statuses:

« “> b,D” whereb €eT"and D € {L,R, S}
* Interpretation: The simulated head needs to write b and move in direction D

° u@n

* Interpretation: The simulated head is not currently depicted on the real tape; the simulated head’s

location is currently the same as the real head’s location

e “b -»” whereb €T

* Interpretation: In the next simulated step, the simulated head will read b
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Simulating k tapes with 1 tape: Head statuses

* Let () be the set of all possible statuses for a single simulated head:

Q={“>b,D":b€eT,D e {L,R,S}}
qe:y

Uu{b->":b€erT}
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Simulating k tapes with 1 tape: States

* New state set:

S1

Q, = {qaccept» Qreject} U < E ) + S1, s Sk € (; q € Q; D e {L’ R}
Sk
q,D

* Interpretation:
* Simulated head j has status s;
* The simulated machine is in state q

 The one real head is making a pass over the tape in direction D
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Simulating k tapes with 1 tape: Start state

, “@"
Qo = | :
@ do.R

* New start state:



Simulating k tapes with 1 tape: Transitions

* The new transition function will have the form

5:0"'xXTI'" - Q' xT'" x{L,R}
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Simulating k tapes with 1 tape: Transitions

S1
et () (
Sk q,D

s, =&

* Ifs; =“>¢;,S" and bj has an underline:

o If Sj = “— Cj, D” and bj has an underline:

* |In all other cases:

by

by

|

\

,D [ where s;, b; are defined by:

/

, —
Let bj = ﬁ

, —
Let b; = ¢

, —
Let bj = Cj

I_u. ”
andsj = b]—>

o ’

, — ']
and sj ="¢cj =

I _ «u ”
and s; = @

, — -
and Sj = S;
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Simulating k tapes with 1 tape: Transitions

Sl / S{ b]'_ \
e Let§’ ( : ) , U= : A ¢ |, L | where SJ-’, b]f are defined by:
) q’L

— ”, r __ I _ « ”»
If s; = & Let b =L ands; =" U -

* In all other cases: Let b]f = L and S]f = 5;
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Simulating k tapes with 1 tape: Transitions

* What do we do when we see ¢? Let 54, ..., S € () (head statuses)and letg € Q

* Assume that Vj, either s; = "b; - "ors; = “¢90”. In the latter case, let b =9

e Let (¢',cq, ..., Cx, Dy, ..., D) = 6(q, by, ..., by)

* Ifsj ="“b; > ", lets; =“ > ¢;, D;". Ifs; = “¢”, let Sj = “gD”

e Let ' (

S1

Sk

) ,O | = q'if ¢’ is a halting state and
q,L

/Si

/
S
\ k q’,R

, O, R

\
/

otherwise
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