CMSC 28100

Introduction to
 Complexity Theory

Spring 2024
Instructor: William Hoza

The Church-Turing Thesis

- Let L be a language

Church-Turing Thesis:

There exists an "algorithm" / "procedure" for figuring out whether a given string is in L if and only if there exists a Turing machine that decides L.

Multi-tape Turing machines

- " k-tape TM"
- Transition function:

$$
\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{\mathrm{L}, \mathrm{R}, \mathrm{~S}\}^{k}
$$

Multi-tape Turing machines

- Let k be any positive integer and let L be a language

Theorem: There exists a k-tape TM that decides L if and only if
there exists a 1-tape TM that decides L

Simulating k tapes with 1 tape

- Idea: Pack a bunch of data into each cell
- Store "simulated heads" on the tape, along with k "simulated symbols" in each cell

Simulating k tapes with 1 tape

- Idea: Pack a bunch of data into each cell
- Store "simulated heads" on the tape, along with k "simulated symbols" in each cell

- The one "real head" will scan back and forth, updating the simulated heads' locations and the simulated tape contents. (Details on the next slides)

Simulating k tapes with 1 tape

- Let $M=\left(Q, \Sigma, \Gamma, \diamond, \sqcup, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be a k-tape Turing machine that decides L
- We will define a 1-tape Turing machine

$$
M^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma^{\prime}, \diamond, \sqcup, \delta^{\prime}, q_{0}^{\prime}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$

that also decides L

Simulating k tapes with 1 tape: Alphabet

- Let $\Lambda=\Gamma \cup\{\underline{b}: b \in \Gamma\}$, i.e., two disjoint copies of Γ
- Interpretation: An underline indicates the presence of a simulated head
- New alphabet: $\Gamma^{\prime}=\{\diamond, \sqcup\} \cup\left\{\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{k}\end{array}\right): b_{1}, \ldots, b_{k} \in \Lambda\right\}$
- Interpretation: One symbol in Γ^{\prime} is one "simulated column" of M
- Identify each input symbol $b \in \Sigma$ with the new symbol $\left(\begin{array}{c}b \\ \vdots \\ \vdots \\ \sqcup\end{array}\right)$, so $\Sigma \subseteq \Gamma^{\prime}$

Simulating k tapes with 1 tape: Head statuses

- At each moment, each simulated head will have one of the following statuses:
- " $\rightarrow b, D$ " where $b \in \Gamma$ and $D \in\{\mathrm{~L}, \mathrm{R}, \mathrm{S}\}$
- Interpretation: The simulated head needs to write b and move in direction D
-"
- Interpretation: The simulated head is not currently depicted on the real tape; the simulated head's location is currently the same as the real head's location
- " $b \rightarrow$ " where $b \in \Gamma$
- Interpretation: In the next simulated step, the simulated head will read b

Simulating k tapes with 1 tape: Head statuses

- Let Ω be the set of all possible statuses for a single simulated head:

$$
\begin{aligned}
\Omega=\{" & \left.\rightarrow b, D^{\prime \prime}: b \in \Gamma, D \in\{\mathrm{~L}, \mathrm{R}, \mathrm{~S}\}\right\} \\
& \cup\left\{" \mathrm{D}^{\prime} "\right\} \\
& \cup\{" b \rightarrow ": b \in \Gamma\}
\end{aligned}
$$

Simulating k tapes with 1 tape: States

- New state set:

$$
Q^{\prime}=\left\{q_{\text {accept }}, q_{\text {reject }}\right\} \cup\left\{\left(\begin{array}{c}
s_{1} \\
\vdots \\
s_{k}
\end{array}\right)_{q, D}: s_{1}, \ldots, s_{k} \in \Omega ; \quad q \in Q ; \quad D \in\{\mathrm{~L}, \mathrm{R}\}\right\}
$$

- Interpretation:
- Simulated head j has status s_{j}
- The simulated machine is in state q
- The one real head is making a pass over the tape in direction D

Simulating k tapes with 1 tape: Start state

- New start state:

$$
q_{0}^{\prime}=\left(\begin{array}{c}
" \circledast \\
\vdots \\
\vdots \\
\text { " }
\end{array}\right)_{q_{0}, R}
$$

Simulating k tapes with 1 tape: Transitions

- The new transition function will have the form

$$
\delta^{\prime}: Q^{\prime} \times \Gamma^{\prime} \rightarrow Q^{\prime} \times \Gamma^{\prime} \times\{\mathrm{L}, \mathrm{R}\}
$$

Simulating k tapes with 1 tape: Transitions

- Let $\delta^{\prime}\left(\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{k}\end{array}\right)_{q, D},\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{k}\end{array}\right)\right)=\left(\left(\begin{array}{c}s_{1}^{\prime} \\ \vdots \\ s_{k}^{\prime}\end{array}\right)_{q, D},\left(\begin{array}{c}b_{1}^{\prime} \\ \vdots \\ b_{k}^{\prime}\end{array}\right), D\right)$ where $s_{j}^{\prime}, b_{j}^{\prime}$ are defined by:
- If $s_{j}=$ " B^{2} ":

Let $b_{j}^{\prime}=\underline{b_{j}} \quad$ and $s_{j}^{\prime}=" b_{j} \rightarrow "$

- If $s_{j}=$ " $\rightarrow c_{j}, \mathrm{~S}$ " and b_{j} has an underline: Let $b_{j}^{\prime}=\underline{c_{j}}$
- If $s_{j}=$ " $\rightarrow c_{j}, D$ " and b_{j} has an underline: Let $b_{j}^{\prime}=c_{j}$ and $s_{j}^{\prime}=" c_{j} \rightarrow$ "
- In all other cases:

$$
\text { Let } b_{j}^{\prime}=b_{j} \quad \text { and } s_{j}^{\prime}=s_{j}
$$

Simulating k tapes with 1 tape: Transitions

- Let $\delta^{\prime}\left(\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{k}\end{array}\right)_{q, \mathrm{R}}, \sqcup\right)=\left(\left(\begin{array}{c}s_{1}^{\prime} \\ \vdots \\ s_{k}^{\prime}\end{array}\right)_{q, \mathrm{~L}},\left(\begin{array}{c}b_{1}^{\prime} \\ \vdots \\ b_{k}^{\prime}\end{array}\right), \mathrm{L}\right)$ where $s_{j}^{\prime}, b_{j}^{\prime}$ are defined by:
- If $s_{j}=$ " 8 "

Let $b_{j}^{\prime}=\underline{\mathrm{L}}$
and $s_{j}^{\prime}=" \sqcup \rightarrow "$

- In all other cases:

$$
\text { Let } b_{j}^{\prime}=\sqcup \quad \text { and } s_{j}^{\prime}=s_{j}
$$

Simulating k tapes with 1 tape: Transitions

- What do we do when we see \diamond ? Let $s_{1}, \ldots, s_{k} \in \Omega$ (head statuses) and let $q \in Q$
- Assume that $\forall j$, either $s_{j}=$ " $b_{j} \rightarrow$ " or $s_{j}=$ " $\%$ ". In the latter case, let $b_{j}=\diamond$
- Let $\left(q^{\prime}, c_{1}, \ldots, c_{k}, D_{1}, \ldots, D_{k}\right)=\delta\left(q, b_{1}, \ldots, b_{k}\right)$

- Let $\delta^{\prime}\left(\left(\begin{array}{c}s_{1} \\ \vdots \\ s_{k}\end{array}\right)_{q, \mathrm{~L}}, \diamond\right)=q^{\prime}$ if q^{\prime} is a halting state and $\left(\left(\begin{array}{c}s_{1}^{\prime} \\ \vdots \\ s_{k}^{\prime}\end{array}\right)_{q^{\prime}, \mathrm{R}}, \diamond, \mathrm{R}\right)$ otherwise

Simulating k tapes with 1 tape

- That completes the definition of M^{\prime}
- Exercise: Rigorously prove that M^{\prime} decides L

TMs can simulate all "reasonable" machines

- We could add various other bells and whistles to the basic TM model
- The ability to observe the two neighboring cells
- A tape that extends infinitely in both directions
- A two-dimensional tape
- None of these changes has any effect on the power of the model

The Church-Turing Thesis

- Let L be a language

Church-Turing Thesis:

There exists an "algorithm" / "procedure" for figuring out whether a given string is in L if and only if there exists a Turing machine that decides L.

Are Turing machines powerful enough?

- OBJECTION: "To encompass all possible algorithms, the model would need to be as powerful as high-level programming languages, such as Python."
- RESPONSE: I claim that if there exists a Python script that decides L, then there exists a Turing machine that decides L

```
1 # Assumption: x, y, z are
# nonnegative integers
def f(x, y, z):
    r = 0
    while (r < y):
            r = r + x
    return (r < z)
```

- We won't actually prove this claim, but let's briefly discuss the process of converting Python code to Turing machines

Step 1: Operate at the level of individual bits

```
1 # Assumption: x, y, z are
# nonnegative integers
def f(x, y, z):
    r=0
        while (r < y):
        r = r + X
    return (r < z)
```

\Downarrow

```
1 # Assumption: x, y, z are
2 # lists of bits starting with
3 # the *least* significant
4 def f(x, y, z):
        r = [0]
        while (lessThan(r, y)):
            addTo(x, r)
        return lessThan(r, z)
```

```
def lessThan(x, y):
    i = max(len(x) - 1, len(y) - 1)
    while i >= 0:
        # Assumption: IndexError }=>
        if (x[i] < y[i]): return True
        if (x[i] > y[i]): return False
        i = i - 1
    return False
def addTo(x, y):
    c = 0
    for i in range(max(len(x), len(y))):
        # Assumption: IndexError }=>
        b = x[i] ^ y[i] ^ c
        c = (x[i] & y[i]) | (x[i] & c)
                | (y[i] & c)
        y[i] = b
    y.append(c)
```


Step 2: Eliminate subroutines

```
1 # Assumption: x, y, z are
2 # lists of bits starting with
3 # the *least* significant
4 def f(x, y, z):
    r= [0]
    while (lessThan(r, y)):
        addTo(x, r)
    return lessThan(r, z)
```

```
def f(x,y,
    whileCondition = False
    i = max(len(r) - 1, len(y) - 1)
    while i >= 0:
        if (r[i] < y[i]):
        whileCondition = True
        break
            if (r[i] > y[i])
            whileCondition = False
            break
            i = i - 1
    if (whileCondition):
        c = 0
            for i in range(max(len(x), len(r)))
                b = x[i]^ r[i]^
                c = (x[i] & r[i]) | (x[i] & c)
                (r[i] & c)
            r[i] = b
            r.append(c)
            whileCondition = False
            i = max(len(r) - 1, len(y) - 1)
            while i >= 0:
            if (r[i] < y[i]):
                whileCondition = True
                    break
            if (r[i] > y[i])
                whileCondition = False
                break
            i = i - 1
    i = max(len(r) - 1, len(z) - 1)
    while i >= 0:
        if (r[i] < z[i]): return True
        if (r[i] > z[i]): return False
            i = i - 1
    return False
```


Step 3: From code to Turing machines

- Basic idea:
- Variable \Rightarrow Tape (assuming the variable holds a list of bits)
- List index \Rightarrow Head
- Line of code \Rightarrow State

Step 3: From code to Turing machines

- State " 4 ":
- If the " r " head and the " y " head both see \sqcup, move them both to the left and go to state " 5 ".
- Otherwise, move those heads to the right and go to state " 4 ".
- State " 5 ":
- If the " r " head sees 0 or \sqcup and the " y " head sees 1 , go to state " 14 ".
- If the " r " head sees 1 and the " y " head sees 0 or \sqcup, go to state "31".
- If the " r " head and the " y " head see \vee, go to state " 31 ".
- Otherwise, move those heads to the left and go to state " 5 ".

Turing machines as a programming language

- You can think of the Turing machine model as a primitive programming language

