CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

The Church-Turing Thesis

* Let L be a language

Church-Turing Thesis:
There exists an “algorithm” / “procedure” for figuring «—— Intuitive notion
out whether a given string is in L if and only if there

. . . . Mathematically
exists a Turing machine that decides L. T precise notion

Multi-tape Turing machines

e “k-tape TM”
* Transition function: o
5:Q0 xT* - Q xT* x {L,R, S}*
O

Multi-tape Turing machines

* Let k be any positive integer and let L be a language

Theorem: There exists a k-tape TM that decides L if and only if

there exists a 1-tape TM that decides L

Simulating k tapes with 1 tape

e |[dea: Pack a bunch of data into

each cell O 1

e Store “simulated heads” on the

tape, along with k “simulated

symbols” in each cell o 0

Simulating k tapes with 1 tape

e |[dea: Pack a bunch of data into

each cell O ()] 1 0 L L
A
* Store “simulated heads” on the O 0 It 1 S
A

tape, along with k “simulated A

symbols” in each cell

* The one “real head” will scan back and forth, updating the simulated heads’

locations and the simulated tape contents. (Details on the next slides)

Simulating k tapes with 1 tape

*letM = (Q, %, T, 0,U,0,490, Qaccepts qreject) be a k-tape Turing

machine that decides L

* We will define a 1-tape Turing machine

M’ = (Q,: %I, 0,6, 616; Qaccept’ Qreject)
that also decides L

Simulating k tapes with 1 tape: Alphabet

letA=TU{b:b €T} i.e., two disjoint copies of T

* Interpretation: An underline indicates the presence of a simulated head

b,
* New alphabet: ' = {O,U} U {(:) : by, ..., by € A}
by,

* Interpretation: One symbol in I’ is one “simulated column” of M

b
* [dentify each input symbol b € X with the new symbol LI ,S0x C I

L

Simulating k tapes with 1 tape: Head statuses

* At each moment, each simulated head will have one of the following statuses:

« “> b,D” whereb €eT"and D € {L,R, S}
* Interpretation: The simulated head needs to write b and move in direction D

° u@n

* Interpretation: The simulated head is not currently depicted on the real tape; the simulated head’s

location is currently the same as the real head’s location

e “b -»” whereb €T

* Interpretation: In the next simulated step, the simulated head will read b

Simulating k tapes with 1 tape: Head statuses

* Let () be the set of all possible statuses for a single simulated head:

Q={“>b,D":b€eT,D e {L,R,S}}
qe:y

Uu{b->":b€erT}

10

Simulating k tapes with 1 tape: States

* New state set:

S1

Q, = {qaccept» Qreject} U < E) + S1, s Sk € (; q € Q; D e {L’ R}
Sk
q,D

* Interpretation:
* Simulated head j has status s;
* The simulated machine is in state g

 The one real head is making a pass over the tape in direction D

11

Simulating k tapes with 1 tape: Start state

, “@"
Qo = | :
@ do.R

* New start state:

Simulating k tapes with 1 tape: Transitions

* The new transition function will have the form

5:0"'xXTI'" - Q' xT'" x{L,R}

13

Simulating k tapes with 1 tape: Transitions

S1
et () (
Sk q,D

s, =&

* Ifs; =“>¢;,S" and bj has an underline:

o If Sj = “— Cj, D” and bj has an underline:

* |In all other cases:

by

by

|

\

,D [where s;, b; are defined by:

/

, —
Let bj = ﬁ

, —
Let b; = ¢

, —
Let bj = Cj

I_u. ”
andsj = b]—>

o ’

, — ']
and sj ="¢cj =

I _ «u ”
and s; = @

, — -
and Sj = S;

14

Simulating k tapes with 1 tape: Transitions

Sl / S{ b]'_ \
e Let§’ (:) , U= : A ¢ |, L | where SJ-’, b]f are defined by:
) q’L

— ”, r __ I _ « ”»
If s; = & Let b =L ands; =" U -

* In all other cases: Let b]f = L and S]f = 5;

15

Simulating k tapes with 1 tape: Transitions

* What do we do when we see ¢? Let 54, ..., S € () (head statuses)and letg € Q

* Assume that Vj, either s; = "b; - "ors; = “¢90”. In the latter case, let b =9

e Let (¢',cq, ..., Cx, Dy, ..., D) = 6(q, by, ..., by)

* Ifsj ="“b; > ", lets; =“ > ¢;, D;". Ifs; = “¢”, let Sj = “gD”

e Let ' (

S1

Sk

) ,O | = q'if ¢’ is a halting state and
q,L

/Si

/
S
\ k q’,R

, O, R

\
/

otherwise

16

Simulating k tapes with 1 tape

* That completes the definition of M’

* Exercise: Rigorously prove that M’ decides L

17

TMs can simulate all “reasonable” machines

 We could add various other bells and whistles to the basic TM model

* The ability to observe the two neighboring cells
* A tape that extends infinitely in both directions

* A two-dimensional tape

* None of these changes has any effect on the power of the model

18

The Church-Turing Thesis

* Let L be a language

Church-Turing Thesis:
There exists an “algorithm” / “procedure” for figuring
out whether a given string is in L if and only if there

exists a Turing machine that decides L.

<«— |ntuitive notion

Mathematically
precise notion

19

Are Turing machines powerful enough?

* OBJECTION: “To encompass all possible algorithms, the model would need

to be as powerful as high-level programming languages, such as Python.”

« RESPONSE: | claim that if there exists a 1 # Assumption: x, y, z are
2 # nonnegative integers
Python script that decides L, then there S et T s 2
. . . . 5 while (r < y):
exists a Turing machine that decides L c c e et
7

return (r < z)

* We won’t actually prove this claim, but let’s

briefly discuss the process of converting Python code to Turing machines

20

Step 1: Operate at the level of individual bits

1 # Assumption: x, y, z are
2 # nonnegative integers
3 def f(x, vy, z):
4 r=20
5 while (r < y):
6 r=r + X
7 return (r < z)

U
1 # Assumption: x, y, z are
2 # lists of bits starting with
3 # the *least* significant
4 def f(x, y, z):
5 r=1[0]
6 while (lessThan(r, y)):
7 addTo(x, r)
8 return lessThan(r, z)

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

def

def

lessThan(x, y):

i = max(len(x) - 1, len(y) - 1)

while i >= 0:
Assumption: IndexError = ©
if (x[1] < y[i]): return True
if (x[i] > y[i]): return False
i=1-1

return False

addTo(x, y):
c =0
for i in range(max(len(x), len(y))):
Assumption: IndexError = 0
b = x[i] * y[i] " ¢
¢ = (x[1] & y[i]) | (x[i] & c)
| (y[i] & ¢)
y[i] = b
y.append(c)

21

Step 2: Eliminate subroutines

1 def f(x, y, z):
2 r=[0]
3 whileCondition = False
4 i = max(len(r) - 1, len(y) - 1)
5 while i >= 0:
6 if (r[i] < y[i]):
7 whileCondition = True
8 break
9 if (r[i] > y[i]):

1 # Assumption: x, y, z are w0 whilecondition = False

1 1 3 1 12 i=1-1
2 # lists of bits starting with 2 i epilecondition:
%k %k 1 1 9 14 c=20
3 # the 1eaSt Slgnlflcant 15 for i in range(max(len(x), len(r))):
. 16 b = x[i] ~ r[i] ~ C

4 dE'F -F(X—' [y-:'l Z) ° - 17 c = ?x[i] & r[i]) | (x[i] & ¢)

5 r=1[0 18 (r[i] & ©)
19 r[i] = b

. . 20 r.append(c)

6 Whlle (leSSThan(P’ y)) ° 21 whileCondition = False

7 addTo(x, r) R R
24 if (r[i] < y[i]):

8 Petur‘n leSSThan(P’ Z) 25 whileCondition = True
26 break
27 if (r[i] > y[i]):
28 whileCondition = False
29 break
30 i=1-1
31 i = max(len(r) - 1, len(z) - 1)
32 while i >= 0:
33 if (r[i] < z[i]): return True
34 if (r[i] > z[i]): return False
35 i=1-1
36 return False

Step 3: From code to Turing machines

* Basic idea:
* Variable = Tape (assuming the variable holds a list of bits)
* Listindex = Head

* Line of code = State

23

Step 3: From code to Turing machines

whileCondition = False

i = max(len(r) - 1, len(y) - 1)

while i >= 0:
if (r[i] < y[i]):
whileCondition
break
if (r[i] > y[i]):
whileCondition
break
i=1-1
if (whileCondition):

True

False

State “4”:

* Ifthe “r” head and the “y” head both see LI, move them both to the

left and go to state “5”.

* Otherwise, move those heads to the right and go to state “4”.

e State “5”:

* [fthe “r” head sees 0 or LI and the “y” head sees 1, go to state

1114” .

* Ifthe “r” head sees 1 and the “y” head sees 0 or L, go to state

II3 1” .

* Ifthe “r” head and the “y” head see ¢, go to state “31”.

* Otherwise, move those heads to the left and go to state “5”.

24

Turing machines as a programming language

* You can think of the Turing machine model as a primitive programming

language

25

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: The Church-Turing Thesis
	Slide 3: Multi-tape Turing machines
	Slide 4: Multi-tape Turing machines
	Slide 5: Simulating k tapes with 1 tape
	Slide 6: Simulating k tapes with 1 tape
	Slide 7: Simulating k tapes with 1 tape
	Slide 8: Simulating k tapes with 1 tape: Alphabet
	Slide 9: Simulating k tapes with 1 tape: Head statuses
	Slide 10: Simulating k tapes with 1 tape: Head statuses
	Slide 11: Simulating k tapes with 1 tape: States
	Slide 12: Simulating k tapes with 1 tape: Start state
	Slide 13: Simulating k tapes with 1 tape: Transitions
	Slide 14: Simulating k tapes with 1 tape: Transitions
	Slide 15: Simulating k tapes with 1 tape: Transitions
	Slide 16: Simulating k tapes with 1 tape: Transitions
	Slide 17: Simulating k tapes with 1 tape
	Slide 18: TMs can simulate all “reasonable” machines
	Slide 19: The Church-Turing Thesis
	Slide 20: Are Turing machines powerful enough?
	Slide 21: Step 1: Operate at the level of individual bits
	Slide 22: Step 2: Eliminate subroutines
	Slide 23: Step 3: From code to Turing machines
	Slide 24: Step 3: From code to Turing machines
	Slide 25: Turing machines as a programming language

