CMSC 28100

Introduction to Complexity Theory

Spring 2024 Instructor: William Hoza

The Church-Turing Thesis

• Let L be a language

Church-Turing Thesis:

There exists an "algorithm" / "procedure" for figuring

out whether a given string is in L if and only if there

exists a Turing machine that decides L.

Mathematically

Intuitive notion

Multi-tape Turing machines

- "k-tape TM"
- Transition function:

 $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$

Multi-tape Turing machines

• Let k be any positive integer and let L be a language

Theorem: There exists a k-tape TM that decides L if and only if there exists a 1-tape TM that decides L

a

- Idea: Pack a bunch of data into each cell
- Store "simulated heads" on the tape, along with k "simulated symbols" in each cell

• Idea: Pack a bunch of data into

each cell

 Store "simulated heads" on the tape, along with k "simulated symbols" in each cell

• The one "real head" will scan back and forth, updating the simulated heads' locations and the simulated tape contents. (Details on the next slides)

- Let $M = (Q, \Sigma, \Gamma, \Diamond, \sqcup, \delta, q_0, q_{accept}, q_{reject})$ be a k-tape Turing machine that decides L
- We will define a 1-tape Turing machine

 $M' = (Q', \Sigma, \Gamma', \Diamond, \sqcup, \delta', q'_0, q_{\text{accept}}, q_{\text{reject}})$

that also decides L

Simulating k tapes with 1 tape: Alphabet

- Let $\Lambda = \Gamma \cup \{\underline{b} : b \in \Gamma\}$, i.e., two disjoint copies of Γ
 - Interpretation: An underline indicates the presence of a simulated head

• New alphabet:
$$\Gamma' = \{\diamondsuit, \sqcup\} \cup \left\{ \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix} : b_1, \dots, b_k \in \Lambda \right\}$$

• Interpretation: One symbol in Γ' is one "simulated column" of M

• Identify each input symbol
$$b \in \Sigma$$
 with the new symbol $\begin{pmatrix} b \\ \Box \\ \vdots \\ \Box \end{pmatrix}$, so $\Sigma \subseteq \Gamma'$

Simulating k tapes with 1 tape: Head statuses

- At each moment, each simulated head will have one of the following statuses:
 - " \rightarrow b, D" where $b \in \Gamma$ and $D \in \{L, R, S\}$
 - Interpretation: The simulated head needs to write *b* and move in direction *D*

• Interpretation: The simulated head is not currently depicted on the real tape; the simulated head's location is currently the same as the real head's location

• " $b \rightarrow$ " where $b \in \Gamma$

• Interpretation: In the next simulated step, the simulated head will read *b*

Simulating k tapes with 1 tape: Head statuses

• Let Ω be the set of all possible statuses for a single simulated head:

$$\Omega = \{ " \to b, D" : b \in \Gamma, D \in \{L, R, S\} \}$$
$$\cup \{ " \textcircled{\baselineskip} " \}$$
$$\cup \{ "b \to " : b \in \Gamma \}$$

Simulating k tapes with 1 tape: States

• New state set:

$$Q' = \left\{ q_{\text{accept}}, q_{\text{reject}} \right\} \cup \left\{ \begin{pmatrix} s_1 \\ \vdots \\ s_k \end{pmatrix}_{q, D} : s_1, \dots, s_k \in \Omega; \quad q \in Q; \quad D \in \{L, R\} \right\}$$

- Interpretation:
 - Simulated head *j* has status *s_i*
 - The simulated machine is in state q
 - The one real head is making a pass over the tape in direction D

Simulating k tapes with 1 tape: Start state

• New start state:

$$q'_{0} = \begin{pmatrix} " & " \\ \vdots \\ " & " \end{pmatrix}_{q_{0}, \mathbf{R}}$$

• The new transition function will have the form

 $\delta' \colon Q' \times \Gamma' \to Q' \times \Gamma' \times \{L, R\}$

• Let
$$\delta' \left(\begin{pmatrix} s_1 \\ \vdots \\ s_k \end{pmatrix}_{q,D}, \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix} \right) = \left(\begin{pmatrix} s'_1 \\ \vdots \\ s'_k \end{pmatrix}_{q,D}, \begin{pmatrix} b'_1 \\ \vdots \\ b'_k \end{pmatrix}, D \right)$$
 where s'_j, b'_j are defined by:

• If $s_i = " \textcircled{}":$ Let $b'_j = b_j$

- If $s_i = " \rightarrow c_i$, S" and b_i has an underline:
- Let $b'_i = c_j$

Let $b'_i = c_i$

and
$$s'_j = "b_j \rightarrow "$$

and
$$s'_j = "c_j \rightarrow "$$

- If $s_i = " \rightarrow c_i$, D" and b_i has an underline:
- In all other cases:

and
$$s'_j = " \bigoplus "$$

• Let
$$\delta' \left(\begin{pmatrix} s_1 \\ \vdots \\ s_k \end{pmatrix}_{q, \mathbb{R}}, \sqcup \right) = \left(\begin{pmatrix} s'_1 \\ \vdots \\ s'_k \end{pmatrix}_{q, \mathbb{L}}, \begin{pmatrix} b'_1 \\ \vdots \\ b'_k \end{pmatrix}, L \right)$$
 where s'_j, b'_j are defined by:

- If $s_j = " \textcircled{P} "$: Let $b'_j = \sqcup$ and $s'_j = " \sqcup \rightarrow "$
- In all other cases: Let $b'_j = \sqcup$ and $s'_j = s_j$

- What do we do when we see \Diamond ? Let $s_1, \ldots, s_k \in \Omega$ (head statuses) and let $q \in Q$
- Assume that $\forall j$, either $s_j = "b_j \rightarrow "$ or $s_j = " \textcircled{P}"$. In the latter case, let $b_j = \Diamond$

• Let
$$(q', c_1, ..., c_k, D_1, ..., D_k) = \delta(q, b_1, ..., b_k)$$

• If
$$s_j = "b_j \rightarrow "$$
, let $s'_j = " \rightarrow c_j$, D_j ". If $s_j = "\textcircled{P}$ ", let $s'_j = "\textcircled{P}$ "

• Let
$$\delta' \left(\begin{pmatrix} s_1 \\ \vdots \\ s_k \end{pmatrix}_{q,L}, \diamond \right) = q'$$
 if q' is a halting state and $\left(\begin{pmatrix} s_1' \\ \vdots \\ s_k' \end{pmatrix}_{q',R}, \diamond, R \right)$ otherwise

- That completes the definition of M'
- Exercise: Rigorously prove that M' decides L

TMs can simulate all "reasonable" machines

- We could add various other bells and whistles to the basic TM model
 - The ability to observe the two neighboring cells
 - A tape that extends infinitely in both directions
 - A two-dimensional tape
- None of these changes has any effect on the power of the model

The Church-Turing Thesis

• Let *L* be a language

Church-Turing Thesis:

There exists an "algorithm" / "procedure" for figuring

out whether a given string is in L if and only if there

exists a Turing machine that decides L.

Mathematically precise notion

Intuitive notion

Are Turing machines powerful enough?

- **OBJECTION:** "To encompass all possible algorithms, the model would need to be as powerful as high-level programming languages, such as Python."
- **RESPONSE:** I claim that if there exists a Python script that decides *L*, then there

exists a Turing machine that decides L

• We won't actually prove this claim, but let's

1 # Assumption: x, y, z are # nonnegative integers 2 def f(x, y, z): 3 r = 04 while (r < y): 5 $r = r + \chi$ 6 return (r < z)7

briefly discuss the process of converting Python code to Turing machines

Step 1: Operate at the level of individual bits

1	<pre># Assumption: x, y, z are</pre>
2	<pre># nonnegative integers</pre>
3	<pre>def f(x, y, z):</pre>
4	r = 0
5	while (r < y):
6	r = r + x
7	return (r < z)

₩

1	<pre># Assumption: x, y, z are</pre>
2	<pre># lists of bits starting with</pre>
3	<pre># the *least* significant</pre>
4	<pre>def f(x, y, z):</pre>
5	r = [0]
6	<pre>while (lessThan(r, y)):</pre>
7	addTo(x, r)
8	return lessThan(r, z)

```
def lessThan(x, y):
9
        i = max(len(x) - 1, len(y) - 1)
10
        while i \ge 0:
11
12
             # Assumption: IndexError \Rightarrow 0
             if (x[i] < y[i]): return True</pre>
13
14
             if (x[i] > y[i]): return False
             i = i - 1
15
16
        return False
17
18
    def addTo(x, y):
19
        C = 0
20
        for i in range(max(len(x), len(y))):
             # Assumption: IndexError \Rightarrow 0
21
22
             b = x[i] ^ y[i] ^ c
             c = (x[i] \& y[i]) | (x[i] \& c)
23
24
                 (y[i] & c)
25
             y[i] = b
        y.append(c)
26
```

Step 2: Eliminate subroutines

```
# Assumption: x, y, z are
1
    # lists of bits starting with
2
    # the *least* significant
3
    def f(x, y, z):
4
5
        r = [0]
        while (lessThan(r, y)):
6
            addTo(x, r)
7
        return lessThan(r, z)
8
```

```
def f(x, y, z):
1
2
        r = [0]
3
        whileCondition = False
4
        i = max(len(r) - 1, len(y) - 1)
5
        while i \ge 0:
6
            if (r[i] < y[i]):
7
                whileCondition = True
8
                break
9
            if (r[i] > y[i]):
                whileCondition = False
10
11
                break
            i = i - 1
12
13
        if (whileCondition):
14
            c = 0
15
            for i in range(max(len(x), len(r))):
                b = x[i] ^ r[i] ^ c
16
                c = (x[i] \& r[i]) | (x[i] \& c)
17
18
                    (r[i] & c)
19
                r[i] = b
20
            r.append(c)
21
            whileCondition = False
22
            i = max(len(r) - 1, len(y) - 1)
23
            while i \ge 0:
24
                if (r[i] < y[i]):
25
                    whileCondition = True
26
                    break
                if (r[i] > y[i]):
27
28
                    whileCondition = False
29
                    break
                i = i - 1
30
31
        i = max(len(r) - 1, len(z) - 1)
32
        while i \ge 0:
            if (r[i] < z[i]): return True</pre>
33
            if (r[i] > z[i]): return False
34
35
            i = i - 1
36
        return False
```

 \Rightarrow

Step 3: From code to Turing machines

- Basic idea:
 - Variable ⇒ Tape (assuming the variable holds a list of bits)
 - List index \Rightarrow Head
 - Line of code \Rightarrow State

Step 3: From code to Turing machines

 \Rightarrow

```
:
3
        whileCondition = False
        i = max(len(r) - 1, len(y) - 1)
4
        while i \ge 0:
5
            if (r[i] < y[i]):
6
7
                 whileCondition = True
                 break
8
9
            if (r[i] > y[i]):
                 whileCondition = False
10
11
                 break
             i = i - 1
12
        if (whileCondition):
13
14
   • • •
:
```

• State "4":

- If the "r" head and the "y" head both see □, move them both to the left and go to state "5".
- Otherwise, move those heads to the right and go to state "4".

• State "5":

- If the "r" head sees 0 or ⊔ and the "y" head sees 1, go to state
 "14".
- If the "r" head sees 1 and the "y" head sees 0 or ⊔, go to state
 "31".
- If the "r" head and the "y" head see ◊, go to state "31".
- Otherwise, move those heads to the left and go to state "5".

Turing machines as a programming language

• You can think of the Turing machine model as a primitive programming language