
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

The Church-Turing Thesis

• Let 𝐿 be a language

2

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring

out whether a given string is in 𝐿 if and only if there

exists a Turing machine that decides 𝐿.

Intuitive notion

Mathematically
precise notion

Multi-tape Turing machines

• “𝑘-tape TM”

• Transition function:

𝛿: 𝑄 × Γ𝑘 → 𝑄 × Γ𝑘 × {L, R, S}𝑘

3

1 1 0♢ ⊔ ⊔

♢ 0 # 1 $ ⊔

𝑞

Multi-tape Turing machines

• Let 𝑘 be any positive integer and let 𝐿 be a language

4

Theorem: There exists a 𝑘-tape TM that decides 𝐿 if and only if

there exists a 1-tape TM that decides 𝐿

• Idea: Pack a bunch of data into

each cell

• Store “simulated heads” on the

tape, along with 𝑘 “simulated

symbols” in each cell

Simulating 𝑘 tapes with 1 tape

5

1 1 0♢ ⊔ ⊔

♢ 0 # 1 $ ⊔

𝑞

• Idea: Pack a bunch of data into

each cell

• Store “simulated heads” on the

tape, along with 𝑘 “simulated

symbols” in each cell

• The one “real head” will scan back and forth, updating the simulated heads’

locations and the simulated tape contents. (Details on the next slides)

Simulating 𝑘 tapes with 1 tape

6

1 1 0♢ ⊔ ⊔

♢ 0 # 1 $ ⊔

0

⊔

Simulating 𝑘 tapes with 1 tape

• Let 𝑀 = 𝑄, Σ, Γ, ♢,⊔, 𝛿, 𝑞0, 𝑞accept, 𝑞reject be a 𝑘-tape Turing

machine that decides 𝐿

• We will define a 1-tape Turing machine

𝑀′ = 𝑄′, Σ, Γ′, ♢,⊔, 𝛿′, 𝑞0
′ , 𝑞accept, 𝑞reject

that also decides 𝐿

7

Simulating 𝑘 tapes with 1 tape: Alphabet

• Let Λ = Γ ∪ പ𝑏 ∶ 𝑏 ∈ Γ , i.e., two disjoint copies of Γ

• Interpretation: An underline indicates the presence of a simulated head

• New alphabet: Γ′ = ♢,⊔ ∪
𝑏1
⋮
𝑏𝑘

∶ 𝑏1, … , 𝑏𝑘 ∈ Λ

• Interpretation: One symbol in Γ′ is one “simulated column” of 𝑀

• Identify each input symbol 𝑏 ∈ Σ with the new symbol

𝑏
⊔
⋮
⊔

, so Σ ⊆ Γ′

8

Simulating 𝑘 tapes with 1 tape: Head statuses

• At each moment, each simulated head will have one of the following statuses:

• “→ 𝑏,𝐷” where 𝑏 ∈ Γ and 𝐷 ∈ L, R, S

• Interpretation: The simulated head needs to write 𝑏 and move in direction 𝐷

• “ ”

• Interpretation: The simulated head is not currently depicted on the real tape; the simulated head’s

location is currently the same as the real head’s location

• “𝑏 →” where 𝑏 ∈ Γ

• Interpretation: In the next simulated step, the simulated head will read 𝑏

9

Simulating 𝑘 tapes with 1 tape: Head statuses

• Let Ω be the set of all possible statuses for a single simulated head:

Ω = “ → 𝑏,𝐷” ∶ 𝑏 ∈ Γ, 𝐷 ∈ L, R, S

∪ “ ”

∪ “𝑏 → ” ∶ 𝑏 ∈ Γ

10

Simulating 𝑘 tapes with 1 tape: States

• New state set:

𝑄′ = 𝑞accept, 𝑞reject ∪

𝑠1
⋮
𝑠𝑘 𝑞,𝐷

∶ 𝑠1, … , 𝑠𝑘 ∈ Ω; 𝑞 ∈ 𝑄; 𝐷 ∈ L, R

• Interpretation:

• Simulated head 𝑗 has status 𝑠𝑗

• The simulated machine is in state 𝑞

• The one real head is making a pass over the tape in direction 𝐷

11

Simulating 𝑘 tapes with 1 tape: Start state

• New start state:

𝑞0
′ =

“ ”
⋮

“ ”
𝑞0,R

12

Simulating 𝑘 tapes with 1 tape: Transitions

• The new transition function will have the form

𝛿′: 𝑄′ × Γ′ → 𝑄′ × Γ′ × L, R

13

Simulating 𝑘 tapes with 1 tape: Transitions

• Let 𝛿′
𝑠1
⋮
𝑠𝑘 𝑞,𝐷

,
𝑏1
⋮
𝑏𝑘

=
𝑠1
′

⋮
𝑠𝑘
′

𝑞,𝐷

,
𝑏1
′

⋮
𝑏𝑘
′

, 𝐷 where 𝑠𝑗
′, 𝑏𝑗

′ are defined by:

• If 𝑠𝑗 = “ ”: Let 𝑏𝑗
′ = 𝑏𝑗 and 𝑠𝑗

′ = “𝑏𝑗 →”

• If 𝑠𝑗 = “→ 𝑐𝑗 , S” and 𝑏𝑗 has an underline: Let 𝑏𝑗
′ = 𝑐𝑗 and 𝑠𝑗

′ = “𝑐𝑗 →”

• If 𝑠𝑗 = “→ 𝑐𝑗 , 𝐷” and 𝑏𝑗 has an underline: Let 𝑏𝑗
′ = 𝑐𝑗 and 𝑠𝑗

′ = “ ”

• In all other cases: Let 𝑏𝑗
′ = 𝑏𝑗 and 𝑠𝑗

′ = 𝑠𝑗

14

Simulating 𝑘 tapes with 1 tape: Transitions

• Let 𝛿′
𝑠1
⋮
𝑠𝑘 𝑞,R

, ⊔ =
𝑠1
′

⋮
𝑠𝑘
′

𝑞,L

,
𝑏1
′

⋮
𝑏𝑘
′

, L where 𝑠𝑗
′, 𝑏𝑗

′ are defined by:

• If 𝑠𝑗 = “ ”: Let 𝑏𝑗
′ =⊔ and 𝑠𝑗

′ = “ ⊔→ ”

• In all other cases: Let 𝑏𝑗
′ =⊔ and 𝑠𝑗

′ = 𝑠𝑗

15

Simulating 𝑘 tapes with 1 tape: Transitions

• What do we do when we see ♢? Let 𝑠1, … , 𝑠𝑘 ∈ Ω (head statuses) and let 𝑞 ∈ 𝑄

• Assume that ∀𝑗, either 𝑠𝑗 = “𝑏𝑗 → ” or 𝑠𝑗 = “ ”. In the latter case, let 𝑏𝑗 = ♢

• Let 𝑞′, 𝑐1, … , 𝑐𝑘 , 𝐷1, … , 𝐷𝑘 = 𝛿 𝑞, 𝑏1, … , 𝑏𝑘

• If 𝑠𝑗 = “𝑏𝑗 → ”, let 𝑠𝑗
′ = “ → 𝑐𝑗 , 𝐷𝑗”. If 𝑠𝑗 = “ ”, let 𝑠𝑗

′ = “ ”

• Let 𝛿′
𝑠1
⋮
𝑠𝑘 𝑞,L

, ♢ = 𝑞′ if 𝑞′ is a halting state and
𝑠1
′

⋮
𝑠𝑘
′

𝑞′,R

, ♢, R otherwise

16

Simulating 𝑘 tapes with 1 tape

• That completes the definition of 𝑀′

• Exercise: Rigorously prove that 𝑀′ decides 𝐿

17

TMs can simulate all “reasonable” machines

• We could add various other bells and whistles to the basic TM model

• The ability to observe the two neighboring cells

• A tape that extends infinitely in both directions

• A two-dimensional tape

• None of these changes has any effect on the power of the model

18

The Church-Turing Thesis

• Let 𝐿 be a language

19

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring

out whether a given string is in 𝐿 if and only if there

exists a Turing machine that decides 𝐿.

Intuitive notion

Mathematically
precise notion

Are Turing machines powerful enough?

• OBJECTION: “To encompass all possible algorithms, the model would need

to be as powerful as high-level programming languages, such as Python.”

• RESPONSE: I claim that if there exists a

Python script that decides 𝐿, then there

exists a Turing machine that decides 𝐿

• We won’t actually prove this claim, but let’s

briefly discuss the process of converting Python code to Turing machines
20

1 # Assumption: x, y, z are
2 # nonnegative integers
3 def f(x, y, z):
4 r = 0
5 while (r < y):
6 r = r + x
7 return (r < z)

Step 1: Operate at the level of individual bits

21

1 # Assumption: x, y, z are
2 # nonnegative integers
3 def f(x, y, z):
4 r = 0
5 while (r < y):
6 r = r + x
7 return (r < z)

1 # Assumption: x, y, z are
2 # lists of bits starting with
3 # the *least* significant
4 def f(x, y, z):
5 r = [0]
6 while (lessThan(r, y)):
7 addTo(x, r)
8 return lessThan(r, z)

9 def lessThan(x, y):
10 i = max(len(x) - 1, len(y) - 1)
11 while i >= 0:
12 # Assumption: IndexError ⇒ 0
13 if (x[i] < y[i]): return True
14 if (x[i] > y[i]): return False
15 i = i - 1
16 return False
17
18 def addTo(x, y):
19 c = 0
20 for i in range(max(len(x), len(y))):
21 # Assumption: IndexError ⇒ 0
22 b = x[i] ^ y[i] ^ c
23 c = (x[i] & y[i]) | (x[i] & c)
24 | (y[i] & c)
25 y[i] = b
26 y.append(c)

⇓

Step 2: Eliminate subroutines

22

1 # Assumption: x, y, z are
2 # lists of bits starting with
3 # the *least* significant
4 def f(x, y, z):
5 r = [0]
6 while (lessThan(r, y)):
7 addTo(x, r)
8 return lessThan(r, z)

1 def f(x, y, z):
2 r = [0]
3 whileCondition = False
4 i = max(len(r) - 1, len(y) - 1)
5 while i >= 0:
6 if (r[i] < y[i]):
7 whileCondition = True
8 break
9 if (r[i] > y[i]):
10 whileCondition = False
11 break
12 i = i - 1
13 if (whileCondition):
14 c = 0
15 for i in range(max(len(x), len(r))):
16 b = x[i] ^ r[i] ^ c
17 c = (x[i] & r[i]) | (x[i] & c)
18 | (r[i] & c)
19 r[i] = b
20 r.append(c)
21 whileCondition = False
22 i = max(len(r) - 1, len(y) - 1)
23 while i >= 0:
24 if (r[i] < y[i]):
25 whileCondition = True
26 break
27 if (r[i] > y[i]):
28 whileCondition = False
29 break
30 i = i - 1
31 i = max(len(r) - 1, len(z) - 1)
32 while i >= 0:
33 if (r[i] < z[i]): return True
34 if (r[i] > z[i]): return False
35 i = i - 1
36 return False

⇒

Step 3: From code to Turing machines

• Basic idea:

• Variable ⇒ Tape (assuming the variable holds a list of bits)

• List index ⇒ Head

• Line of code ⇒ State

23

Step 3: From code to Turing machines

• State “4”:

• If the “r” head and the “y” head both see ⊔, move them both to the

left and go to state “5”.

• Otherwise, move those heads to the right and go to state “4”.

• State “5”:

• If the “r” head sees 0 or ⊔ and the “y” head sees 1, go to state

“14”.

• If the “r” head sees 1 and the “y” head sees 0 or ⊔, go to state

“31”.

• If the “r” head and the “y” head see ♢, go to state “31”.

• Otherwise, move those heads to the left and go to state “5”.

24

⋮

3 whileCondition = False
4 i = max(len(r) - 1, len(y) - 1)
5 while i >= 0:
6 if (r[i] < y[i]):
7 whileCondition = True
8 break
9 if (r[i] > y[i]):
10 whileCondition = False
11 break
12 i = i - 1
13 if (whileCondition):
14 ⋯

 ⋮

⇒

Turing machines as a programming language

• You can think of the Turing machine model as a primitive programming

language

25

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: The Church-Turing Thesis
	Slide 3: Multi-tape Turing machines
	Slide 4: Multi-tape Turing machines
	Slide 5: Simulating k tapes with 1 tape
	Slide 6: Simulating k tapes with 1 tape
	Slide 7: Simulating k tapes with 1 tape
	Slide 8: Simulating k tapes with 1 tape: Alphabet
	Slide 9: Simulating k tapes with 1 tape: Head statuses
	Slide 10: Simulating k tapes with 1 tape: Head statuses
	Slide 11: Simulating k tapes with 1 tape: States
	Slide 12: Simulating k tapes with 1 tape: Start state
	Slide 13: Simulating k tapes with 1 tape: Transitions
	Slide 14: Simulating k tapes with 1 tape: Transitions
	Slide 15: Simulating k tapes with 1 tape: Transitions
	Slide 16: Simulating k tapes with 1 tape: Transitions
	Slide 17: Simulating k tapes with 1 tape
	Slide 18: TMs can simulate all “reasonable” machines
	Slide 19: The Church-Turing Thesis
	Slide 20: Are Turing machines powerful enough?
	Slide 21: Step 1: Operate at the level of individual bits
	Slide 22: Step 2: Eliminate subroutines
	Slide 23: Step 3: From code to Turing machines
	Slide 24: Step 3: From code to Turing machines
	Slide 25: Turing machines as a programming language

