
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Python script ⇒ Turing machine

• Basic idea:

• Variable ⇒ Tape (assuming the variable holds a list of bits)

• List index ⇒ Head

• Line of code ⇒ State

2

Turing machines as a programming language

• You can think of the Turing machine model as a primitive programming

language

• From a programming perspective, the model is extremely inconvenient and

annoying, because it has so few features!

• However, our goal is to prove impossibility results

• The model has few features, which will make our lives easier, not harder

3

The Church-Turing Thesis

• Let 𝐿 be a language

4

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring

out whether a given string is in 𝐿 if and only if there

exists a Turing machine that decides 𝐿.

Intuitive notion

Mathematically
precise notion

Turing machines vs. your laptop

• OBJECTION:

• “My laptop is a single device that can run arbitrary computations.

• I don’t use one laptop for email, a second laptop for Zoom, a third laptop for Tetris,

and a fourth laptop for photo editing. I just use one laptop for everything.

• In contrast, a single Turing machine only solves one problem.

• If 𝑀 decides one language, then it can’t also decide a different language.

• Therefore, Turing machines don’t properly model my laptop.”

5

Code as data

• The response to this objection is based on the principle of viewing

“code as data”

• A Turing machine 𝑀 can be encoded as a string 𝑀

6

Encoding a Turing machine as a string

• Example: Problem set 1, problem 4

7

… {"a": {">": null, "_": ["o", "_",
"R"], "0": ["b", "_", "R"], "1":
["c", "_", "R"], "#": ["d", "_",
"R"], "$": null, "&": null, "%":
null}, "b": {">": null, "_": ["o",
"0", "R"], "0": ["b", "0", "R"],
"1": ["c", "0", "R"], …

turing-machine.json

⇓

A text file (string) that encodes a Turing machine

Encoding a Turing machine as a string

• For a Turing machine 𝑀 = 𝑄, Σ, Γ, ♢,⊔, 𝛿, 𝑞0, 𝑞accept, 𝑞reject , we could

define 𝑀 ∈ 0, 1, #, &, $,% ∗ as follows

• Assume WLOG that 𝑄 = 0, 1, 2,… ,𝑚 and Γ = 𝑚 + 1,… ,𝑚 + 𝑘

• Assume WLOG that 𝑞0 = 0; 𝑞accept = 𝑚 − 1; and 𝑞reject = 𝑚

• Assume WLOG that ♢ = 𝑚 + 1; ⊔ = 𝑚 + 2; and Σ = 𝑚 + 3,𝑚 + 4,… ,𝑚 + 2 + 𝑟

• We let 𝑀 = 𝑚 #⟨𝑟⟩#⟨𝑘⟩#⟨𝛿⟩, where ⟨𝛿⟩ is the list of all entries in the transition

table, where rows are separated by & symbols, cells within a row are separated by $

symbols, and the individual components of each entry are separated by % symbols

8

Analyzing a given Turing machine

• Given the encoding 𝑀 of a Turing machine 𝑀, one can try to answer

various questions about 𝑀

• How many states does 𝑀 have?

• How big is the tape alphabet of 𝑀?

• Does 𝑀 accept ###11 within 10000 steps?

9

Analyzing TMs

10

def simulate(transition, input, steps):
 SYMBOLS = [">", "_", "0", "1", "#", "$", "&", "%"]
 STATES = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p"]

 state = STATES[0]
 tape = [SYMBOLS[0]] + list(input)
 headPosition = 1

 for i in range(steps):
 if (headPosition >= len(tape)):
 tape.append(SYMBOLS[1])

 symb = tape[headPosition]
 arr = transition[state][symb]
 if arr == None:
 return "No transition available"

 state = arr[0]
 tape[headPosition] = arr[1]
 headPosition = headPosition + 1 if arr[2] == "R" else headPosition - 1

 ⋮

@weight(0.5)
@number("3")
def test3(self):
 """Run the machine on input ###11"""
 val = simulate(self.transition, "###11", 10000)
 self.assertEqual(val, "Accept")

• Example: The

autograder for

problem set 1,

problem 4

Simulating one step

• For every Turing machine 𝑀 and configuration 𝐶 of 𝑀, define

STEP 𝑀, 𝐶 = 𝑀,NEXT 𝐶

• (Proof left as an exercise)

11

Lemma: There exists a Turing machine 𝑆 that computes STEP. That is,

given 𝑀,𝐶 as input, the machine 𝑆 halts, and its final configuration is

♢𝑞acceptSTEP 𝑀, 𝐶 , possibly followed by some number of ⊔ symbols.

Universal Turing machines

• Proof sketch: (1) Construct 𝐶 = ♢𝑞0𝑤. (2) Alternate between updating

𝐶 ← NEXT(𝐶) and checking whether 𝐶 is a halting configuration
12

Theorem: There exists a Turing machine 𝑈 such that for every Turing

machine 𝑀 and every input 𝑤:

• If 𝑀 accepts 𝑤, then 𝑈 accepts ⟨𝑀,𝑤⟩.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀,𝑤⟩.

• If 𝑀 loops on 𝑤, then 𝑈 loops on ⟨𝑀,𝑤⟩.

What is the universal Turing machine’s input alphabet?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: The union of 𝑀’s input alphabet
and the alphabet for encoding 𝑀

B: Whatever 𝑀’s input alphabet is

D: The union of all possible
alphabets

A: A fixed, constant-size alphabet
that doesn’t depend on anything

Universal Turing machines

• A universal Turing machine can be “programmed” to do anything that

is computationally possible

• This is why you don’t need separate laptops for separate

computational tasks

• If you are stranded on an alien planet and you are trying to build a

computer, your job is to build a universal Turing machine

13

The Church-Turing Thesis

• Let 𝐿 be a language

14

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring

out whether a given string is in 𝐿 if and only if there

exists a Turing machine that decides 𝐿.

Intuitive notion

Mathematically
precise notion

Note on standards of rigor

• Going forward, when we want to construct a Turing machine (e.g., for an

existence proof), we will simply describe what it does in plain English, as if we

are giving instructions to a human being

• Each plain English description can be formalized as a Turing machine, but this is tedious

• You should follow this convention on problem set 3 and beyond

• Nevertheless, the Turing machine model is extremely valuable for us, because

it tells us what an arbitrary algorithm looks like!

15

Which problems

can be solved

through computation?

16

What are Turing machines

capable of?

17

What are Turing machines

NOT capable of?

18

Decidable and undecidable

• Let 𝐿 be a language

• We say that 𝐿 is decidable if there exists a Turing machine 𝑀 that

decides 𝐿

• Otherwise, we say that 𝐿 is undecidable

19

Computability vs. Complexity

• For now, we don’t care how long it takes to decide 𝐿

• “Computability Theory.” Possible vs. Impossible

• As long as 𝑀 has a finite running time on every input, we’re satisfied

• Later, we will study what happens when we do care how long it takes

• “Complexity Theory.” Tractable vs. Intractable

• We will also consider other computational resources besides time

20

Which languages are decidable?

21

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Python script implies Turing machine
	Slide 3: Turing machines as a programming language
	Slide 4: The Church-Turing Thesis
	Slide 5: Turing machines vs. your laptop
	Slide 6: Code as data
	Slide 7: Encoding a Turing machine as a string
	Slide 8: Encoding a Turing machine as a string
	Slide 9: Analyzing a given Turing machine
	Slide 10: Analyzing TMs
	Slide 11: Simulating one step
	Slide 12: Universal Turing machines
	Slide 13: Universal Turing machines
	Slide 14: The Church-Turing Thesis
	Slide 15: Note on standards of rigor
	Slide 16: Which problems can be solved through computation?
	Slide 17: What are Turing machines capable of?
	Slide 18: What are Turing machines NOT capable of?
	Slide 19: Decidable and undecidable
	Slide 20: Computability vs. Complexity
	Slide 21: Which languages are decidable?

