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Python script ⇒ Turing machine

• Basic idea:

• Variable ⇒ Tape (assuming the variable holds a list of bits)

• List index ⇒ Head

• Line of code ⇒ State
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Turing machines as a programming language

• You can think of the Turing machine model as a primitive programming 

language

• From a programming perspective, the model is extremely inconvenient and 

annoying, because it has so few features!

• However, our goal is to prove impossibility results

• The model has few features, which will make our lives easier, not harder
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The Church-Turing Thesis

• Let 𝐿 be a language
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Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring 

out whether a given string is in 𝐿 if and only if there 

exists a Turing machine that decides 𝐿.

Intuitive notion

Mathematically 
precise notion



Turing machines vs. your laptop

• OBJECTION:

• “My laptop is a single device that can run arbitrary computations.

• I don’t use one laptop for email, a second laptop for Zoom, a third laptop for Tetris, 

and a fourth laptop for photo editing. I just use one laptop for everything.

• In contrast, a single Turing machine only solves one problem.

• If 𝑀 decides one language, then it can’t also decide a different language.

• Therefore, Turing machines don’t properly model my laptop.”
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Code as data

• The response to this objection is based on the principle of viewing 

“code as data”

• A Turing machine 𝑀 can be encoded as a string 𝑀
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Encoding a Turing machine as a string

• Example: Problem set 1, problem 4
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… {"a": {">": null, "_": ["o", "_", 
"R"], "0": ["b", "_", "R"], "1": 
["c", "_", "R"], "#": ["d", "_", 
"R"], "$": null, "&": null, "%": 
null}, "b": {">": null, "_": ["o", 
"0", "R"], "0": ["b", "0", "R"], 
"1": ["c", "0", "R"], …

turing-machine.json

⇓

A text file (string) that encodes a Turing machine



Encoding a Turing machine as a string

• For a Turing machine 𝑀 = 𝑄, Σ, Γ, ♢,⊔, 𝛿, 𝑞0, 𝑞accept, 𝑞reject , we could 

define 𝑀 ∈ 0, 1, #, &, $,% ∗ as follows

• Assume WLOG that 𝑄 = 0, 1, 2,… ,𝑚 and Γ = 𝑚 + 1,… ,𝑚 + 𝑘

• Assume WLOG that 𝑞0 = 0; 𝑞accept = 𝑚 − 1; and 𝑞reject = 𝑚

• Assume WLOG that ♢ = 𝑚 + 1; ⊔ = 𝑚 + 2; and Σ = 𝑚 + 3,𝑚 + 4,… ,𝑚 + 2 + 𝑟

• We let 𝑀 = 𝑚 #⟨𝑟⟩#⟨𝑘⟩#⟨𝛿⟩, where ⟨𝛿⟩ is the list of all entries in the transition 

table, where rows are separated by & symbols, cells within a row are separated by $

symbols, and the individual components of each entry are separated by % symbols
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Analyzing a given Turing machine

• Given the encoding 𝑀 of a Turing machine 𝑀, one can try to answer 

various questions about 𝑀

• How many states does 𝑀 have?

• How big is the tape alphabet of 𝑀?

• Does 𝑀 accept ###11 within 10000 steps?
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Analyzing TMs
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def simulate(transition, input, steps):
  SYMBOLS = [">", "_", "0", "1", "#", "$", "&", "%"]
  STATES = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p"]

  state = STATES[0]
  tape = [SYMBOLS[0]] + list(input)
  headPosition = 1

  for i in range(steps):
    if (headPosition >= len(tape)):
      tape.append(SYMBOLS[1])

    symb = tape[headPosition]
    arr = transition[state][symb]
    if arr == None:
      return "No transition available"

    state = arr[0]
    tape[headPosition] = arr[1]
    headPosition = headPosition + 1 if arr[2] == "R" else headPosition - 1

    ⋮

@weight(0.5)
@number("3")
def test3(self):
  """Run the machine on input ###11"""
  val = simulate(self.transition, "###11", 10000)
  self.assertEqual(val, "Accept")

• Example: The 

autograder for 

problem set 1, 

problem 4



Simulating one step

• For every Turing machine 𝑀 and configuration 𝐶 of 𝑀, define

STEP 𝑀, 𝐶 = 𝑀,NEXT 𝐶

• (Proof left as an exercise)
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Lemma: There exists a Turing machine 𝑆 that computes STEP. That is, 

given 𝑀,𝐶  as input, the machine 𝑆 halts, and its final configuration is 

♢𝑞acceptSTEP 𝑀, 𝐶 , possibly followed by some number of ⊔ symbols.



Universal Turing machines

• Proof sketch: (1) Construct 𝐶 = ♢𝑞0𝑤. (2) Alternate between updating 

𝐶 ← NEXT(𝐶) and checking whether 𝐶 is a halting configuration
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Theorem: There exists a Turing machine 𝑈 such that for every Turing 

machine 𝑀 and every input 𝑤:

• If 𝑀 accepts 𝑤, then 𝑈 accepts ⟨𝑀,𝑤⟩.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀,𝑤⟩.

• If 𝑀 loops on 𝑤, then 𝑈 loops on ⟨𝑀,𝑤⟩.

What is the universal Turing machine’s input alphabet?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: The union of 𝑀’s input alphabet
and the alphabet for encoding 𝑀

B: Whatever 𝑀’s input alphabet is

D: The union of all possible
alphabets

A: A fixed, constant-size alphabet
that doesn’t depend on anything



Universal Turing machines

• A universal Turing machine can be “programmed” to do anything that 

is computationally possible

• This is why you don’t need separate laptops for separate 

computational tasks

• If you are stranded on an alien planet and you are trying to build a 

computer, your job is to build a universal Turing machine
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The Church-Turing Thesis

• Let 𝐿 be a language
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Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring 

out whether a given string is in 𝐿 if and only if there 

exists a Turing machine that decides 𝐿.

Intuitive notion

Mathematically 
precise notion



Note on standards of rigor

• Going forward, when we want to construct a Turing machine (e.g., for an 

existence proof), we will simply describe what it does in plain English, as if we 

are giving instructions to a human being

• Each plain English description can be formalized as a Turing machine, but this is tedious

• You should follow this convention on problem set 3 and beyond

• Nevertheless, the Turing machine model is extremely valuable for us, because 

it tells us what an arbitrary algorithm looks like!
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Which problems

can be solved

through computation?
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What are Turing machines

capable of?
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What are Turing machines

NOT capable of?
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Decidable and undecidable

• Let 𝐿 be a language

• We say that 𝐿 is decidable if there exists a Turing machine 𝑀 that 

decides 𝐿

• Otherwise, we say that 𝐿 is undecidable
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Computability vs. Complexity

• For now, we don’t care how long it takes to decide 𝐿

• “Computability Theory.” Possible vs. Impossible

• As long as 𝑀 has a finite running time on every input, we’re satisfied

• Later, we will study what happens when we do care how long it takes

• “Complexity Theory.” Tractable vs. Intractable

• We will also consider other computational resources besides time
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Which languages are decidable?
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