CMSC 28100

Introduction to Complexity Theory

Spring 2024 Instructor: William Hoza

Which problems

can be solved

through computation?

Which languages are decidable?

Is every language decidable?

The liar paradox

Self-rejecting Turing machines

- Let *M* be a TM (with a large enough input alphabet)
- A strange-but-legal thing we can do: Run M on $\langle M \rangle$
- Three possibilities:
 - *M* accepts $\langle M \rangle$
 - *M* rejects $\langle M \rangle$
 - M loops on $\langle M \rangle$
- **Definition:** We say that a Turing machine M is self-rejecting if M rejects $\langle M \rangle$

Self-rejecting Turing machines

• Let SELF-REJECTORS = { $\langle M \rangle$: *M* is a self-rejecting Turing machine}

Lemma: SELF-REJECTORS is undecidable

- **Proof:** Let *M* be any TM. We'll show that *M* does not decide SELF-REJECTORS
 - Case 1: *M* is self-rejecting: $\langle M \rangle \in \text{SELF-REJECTORS}$, but *M* rejects $\langle M \rangle \times$
 - Case 2: *M* isn't self-rejecting: $\langle M \rangle \notin$ SELF-REJECTORS, but *M* doesn't reject $\langle M \rangle \times$
 - Either way, *M* fails!

Contrived vs. natural

- Admittedly, SELF-REJECTORS is a contrived language, cooked up purely for the sake of proving an undecidability result
- Are there undecidable languages that are natural/well-motivated/interesting?
- Yes! Key example: The halting problem

The halting problem

Here is an attempt at designing an algorithm that solves the halting problem:

Given *M* and *w*:

1. Simulate *M* on w.

2. If it halts, accept; if it loops, reject.

- **Problem:** Given a Turing machine *M* and an input *w*, determine whether *M* halts on *w*.
- Roughly speaking, this is the problem of identifying bugs in someone

The halting problem is undecidable

• Let HALT = { $\langle M, w \rangle$: *M* is a Turing machine that halts on input *w*}

Theorem: HALT is undecidable.

- **Proof by contradiction:** Assume that *H* decides HALT
- Let's design an algorithm that decides SELF-REJECTORS. Given $\langle M \rangle$:
- 1. Construct $\langle M' \rangle$, where M' is a modified version of M in which the accept state has been replaced with a looping state
- 2. Simulate H on $\langle M', \langle M \rangle \rangle$. If it accepts, accept; if it rejects, reject.

The Church-Turing thesis, revisited

• Let *L* be a language

Church-Turing Thesis:

There exists an "algorithm" / "procedure" for figuring out whether a given string is in L if and only if there exists a Turing machine that decides L.

- Computation is an intuitive notion rooted in everyday human experience
- Could it be possible to solve the halting problem using science and technology?

Hypercomputers

- A hypercomputer is a hypothetical device that can solve some computational problem that cannot be solved by Turing machines, such as the halting problem
- Could it be possible that there are hypercomputers at the centers of stars? Inside black holes?
- Could it be possible to build a hypercomputer?

The Physical Church-Turing Thesis

• Let L be a language

Physical Church-Turing Thesis:

It is physically possible to build a device that decides L if

and only if there exists a Turing machine that decides L.

The Physical Church-Turing Thesis

- The standard Church-Turing thesis is a philosophical statement
- The Physical Church-Turing thesis is a scientific law
- Conceivably, it could be disproven by future discoveries... but that would be very surprising
- Analogy: Second Law of Thermodynamics
- Analogy: Cannot travel faster than the speed of light

Undecidability

• First, we proved that SELF-REJECTORS is undecidable

- Then, we used the fact that SELF-REJECTORS is undecidable to prove that HALT is undecidable
- Next, let's use the fact that HALT is undecidable to prove that other interesting languages are undecidable

Complement of the halting problem

- Let $\overline{\text{HALT}} = \{ \langle M, w \rangle : M \text{ does not halt on } w \}$
- Claim: HALT is undecidable
- **Proof by contradiction:** Assume that *H* decides HALT
- Let's design an algorithm that decides HALT. Given $\langle M, w \rangle$:
- 1. Run *H* on $\langle M, w \rangle$
- 2. If it accepts, reject; if it rejects, accept.

Technicality: The first step of our algorithm should be to confirm that the input is "valid," i.e., confirm that the input has the form $\langle M, w \rangle$ for some Turing machine M and some input w to

The "acceptance problem"

- Let $A_{TM} = \{ \langle M, w \rangle : M \text{ is a Turing machine that accepts input } w \}$
- Claim: A_{TM} is undecidable
- **Proof by contradiction:** Assume that *A* decides A_{TM}
- Let's design an algorithm that decides HALT. Given $\langle M, w \rangle$:
- 1. Construct $\langle M' \rangle$, where M' is a modified version of M in which all rejecting transitions have been changed into accepting transitions
- 2. Simulate A on $\langle M', w \rangle$. If it accepts, accept; if it rejects, reject.