
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Which problems

can be solved

through computation?

2

Which languages are decidable?

3

Is every language decidable?

4

The liar paradox

5

Are you selecting option B as your answer to this question?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: Yes

A: Yes

D: Yes

B: No

Self-rejecting Turing machines

• Let 𝑀 be a TM (with a large enough input alphabet)

• A strange-but-legal thing we can do: Run 𝑀 on 𝑀

• Three possibilities:

• 𝑀 accepts 𝑀

• 𝑀 rejects 𝑀

• 𝑀 loops on 𝑀

• Definition: We say that a Turing machine 𝑀 is self-rejecting if 𝑀 rejects 𝑀

6

Self-rejecting Turing machines

• Let SELF-REJECTORS = 𝑀 ∶ 𝑀 is a self-rejecting Turing machine

• Proof: Let 𝑀 be any TM. We’ll show that 𝑀 does not decide SELF-REJECTORS

• Case 1: 𝑀 is self-rejecting: 𝑀 ∈ SELF-REJECTORS, but 𝑀 rejects 𝑀

• Case 2: 𝑀 isn’t self-rejecting: 𝑀 ∉ SELF-REJECTORS, but 𝑀 doesn’t reject 𝑀

• Either way, 𝑀 fails!
7

Lemma: SELF-REJECTORS is undecidable

Contrived vs. natural

• Admittedly, SELF-REJECTORS is a contrived language, cooked up

purely for the sake of proving an undecidability result

• Are there undecidable languages that are

natural/well-motivated/interesting?

• Yes! Key example: The halting problem

8

The halting problem

• Problem: Given a Turing machine 𝑀 and an input 𝑤, determine

whether 𝑀 halts on 𝑤.

• Roughly speaking, this is the problem of identifying bugs in someone

else’s code!

9

Does the proposed algorithm work?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: Yes

A: No. Step 1 isn’t legal, so the
algorithm isn’t well-defined

D: No. The algorithm behaves
incorrectly in some cases

B: No. Step 2 isn’t legal, so the
algorithm isn’t well-defined

Given 𝑀 and 𝑤:
1. Simulate 𝑀 on w.
2. If it halts, accept; if it loops, reject.

Here is an attempt at designing an
algorithm that solves the halting problem:

The halting problem is undecidable

• Let HALT = { 𝑀,𝑤 :𝑀 is a Turing machine that halts on input 𝑤}

• Proof by contradiction: Assume that 𝐻 decides HALT

• Let’s design an algorithm that decides SELF-REJECTORS. Given 𝑀 :

1. Construct 𝑀′ , where 𝑀′ is a modified version of 𝑀 in which the

accept state has been replaced with a looping state

2. Simulate 𝐻 on 𝑀′, 𝑀 . If it accepts, accept; if it rejects, reject.
10

Theorem: HALT is undecidable.

The Church-Turing thesis, revisited

• Let 𝐿 be a language

• Computation is an intuitive notion rooted in everyday human experience

• Could it be possible to solve the halting problem using science and technology?

11

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring out whether a given

string is in 𝐿 if and only if there exists a Turing machine that decides 𝐿.

Hypercomputers

• A hypercomputer is a hypothetical device that can solve some

computational problem that cannot be solved by Turing machines,

such as the halting problem

• Could it be possible that there are hypercomputers at the centers of

stars? Inside black holes?

• Could it be possible to build a hypercomputer?

12

The Physical Church-Turing Thesis

• Let 𝐿 be a language

13

Physical Church-Turing Thesis:

It is physically possible to build a device that decides 𝐿 if

and only if there exists a Turing machine that decides 𝐿.

The Physical Church-Turing Thesis

• The standard Church-Turing thesis is a philosophical statement

• The Physical Church-Turing thesis is a scientific law

• Conceivably, it could be disproven by future discoveries… but that would

be very surprising

• Analogy: Second Law of Thermodynamics

• Analogy: Cannot travel faster than the speed of light

14

Undecidability

• First, we proved that SELF-REJECTORS is

undecidable

• Then, we used the fact that SELF-REJECTORS is undecidable to

prove that HALT is undecidable

• Next, let’s use the fact that HALT is undecidable to prove that other

interesting languages are undecidable

15

Complement of the halting problem

• Let HALT = { 𝑀,𝑤 :𝑀 does not halt on 𝑤}

• Claim: HALT is undecidable

• Proof by contradiction: Assume that 𝐻 decides HALT

• Let’s design an algorithm that decides HALT. Given 𝑀,𝑤 :

1. Run 𝐻 on 𝑀,𝑤

2. If it accepts, reject; if it rejects, accept.

16

Technicality: The first step of our algorithm

should be to confirm that the input is “valid,”

i.e., confirm that the input has the form 𝑀,𝑤

for some Turing machine 𝑀 and some input 𝑤 to

𝑀

The “acceptance problem”

• Let ATM = { 𝑀,𝑤 :𝑀 is a Turing machine that accepts input 𝑤}

• Claim: ATM is undecidable

• Proof by contradiction: Assume that 𝐴 decides ATM

• Let’s design an algorithm that decides HALT. Given 𝑀,𝑤 :

1. Construct 𝑀′ , where 𝑀′ is a modified version of 𝑀 in which all

rejecting transitions have been changed into accepting transitions

2. Simulate 𝐴 on 𝑀′, 𝑤 . If it accepts, accept; if it rejects, reject.

17

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Which problems can be solved through computation?
	Slide 3: Which languages are decidable?
	Slide 4: Is every language decidable?
	Slide 5: The liar paradox
	Slide 6: Self-rejecting Turing machines
	Slide 7: Self-rejecting Turing machines
	Slide 8: Contrived vs. natural
	Slide 9: The halting problem
	Slide 10: The halting problem is undecidable
	Slide 11: The Church-Turing thesis, revisited
	Slide 12: Hypercomputers
	Slide 13: The Physical Church-Turing Thesis
	Slide 14: The Physical Church-Turing Thesis
	Slide 15: Undecidability
	Slide 16: Complement of the halting problem
	Slide 17: The “acceptance problem”

