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Which languages are decidable?
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Undecidability

• First, we proved that SELF-REJECTORS is

undecidable

• Then, we used the fact that SELF-REJECTORS is undecidable to 

prove that HALT is undecidable

• Then, we used the fact that HALT is undecidable to prove that other 

interesting languages are undecidable
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The “acceptance problem”

• Let ATM = { 𝑀,𝑤 :𝑀 is a Turing machine that accepts input 𝑤}

• Claim: ATM is undecidable

• Proof by contradiction: Assume that 𝐴 decides ATM

• Let’s design an algorithm that decides HALT. Given 𝑀,𝑤 :

1. Construct 𝑀′ , where 𝑀′ is a modified version of 𝑀 in which all 

rejecting transitions have been changed into accepting transitions

2. Simulate 𝐴 on 𝑀′, 𝑤 . If it accepts, accept; if it rejects, reject.
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Reductions

• The proof strategy we have been using is called a reduction

• A reduction is a way of relating one problem to another problem
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Informal definition:

“Problem A reduces to problem B”

means

“A solution to problem B would imply a solution to problem A”



Reductions

• Example: Suppose I bring my daughter to a zoo in Mexico. She asks, “Do they have 

octopuses? Do they have camels? Do they have gorillas? Do they have …”

• My job is to solve problem A: “Given an animal name in English, determine 

whether it’s at the zoo”

• A helpful zoo employee can solve problem B: “Given an animal name in Spanish, 

determine whether it’s at the zoo”

• We can reduce problem A to problem B by translating from English to Spanish
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Mapping reductions

• There are multiple kinds of reductions in computer science

• In this course, we will focus on a kind of reduction called a 

“mapping reduction”
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Mapping reductions

• Let 𝐿1 and 𝐿2 be languages over the alphabets Σ1 and Σ2 respectively

• Definition: A mapping reduction from 𝐿1 to 𝐿2 is a function 𝑓: Σ1
∗ → Σ2

∗ such 

that

• For every 𝑤 ∈ 𝐿1, we have 𝑓 𝑤 ∈ 𝐿2 “YES maps to YES”

• For every 𝑤 ∈ Σ1
∗ ∖ 𝐿1, we have 𝑓 𝑤 ∉ 𝐿2 “NO maps to NO”

• The function 𝑓 is computable, i.e., there exists a Turing machine 𝑀 such that for every 

𝑤 ∈ Σ1
∗, 𝑀 halts on input 𝑤 with ♢𝑓 𝑤 written on its tape (followed by blanks)
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𝑓 octopus = pulpo

𝑀 = Google Translate



Mapping reductions

• Informally, a mapping reduction from 𝐿1 to 𝐿2 is a way of converting

instances of 𝐿1 into equivalent instances of 𝐿2

• Note: Any string 𝑤 ∈ Σ∗ is called an “instance” of 𝐿 ⊆ Σ∗
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Σ1
∗ Σ2

∗

𝐿1 𝐿2



Using reductions to prove decidability

• Suppose there exists a mapping reduction 𝑓 from 𝐿1 to 𝐿2

• Claim: If 𝐿2 is decidable, then 𝐿1 is decidable

• Proof: Given 𝑤 ∈ Σ1
∗:

1. Compute 𝑓 𝑤 ∈ Σ2
∗ (this is possible because 𝑓 is computable)

2. Check whether 𝑓 𝑤 ∈ 𝐿2 (this is possible because 𝐿2 is decidable)

3. Accept if 𝑓 𝑤 ∈ 𝐿2 and reject if 𝑓 𝑤 ∉ 𝐿2
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Using reductions to prove decidability
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Algorithm that 

computes 𝑓

Algorithm that 

decides 𝐿2
𝑤

𝑓 𝑤
Acc/Rej

Algorithm that decides 𝐿1

The “mapping reduction” is 𝑓



Using reductions to prove undecidability

• Suppose there exists a mapping reduction 𝑓 from 𝐿1 to 𝐿2

• Claim: If 𝐿1 is undecidable, then 𝐿2 is undecidable

• Proof: If 𝐿2 were decidable, then 𝐿1 would be decidable
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Using reductions to prove undecidability

• Strategy for proving that some language 𝐿 is undecidable:

• Identify a suitable language 𝐿HARD that we previously proved is undecidable

• Design a mapping reduction 𝑓 from 𝐿HARD to 𝐿

• Make sure you do the reduction in the correct direction!

• The amazing thing about this strategy is that the existence of one 

algorithm implies the nonexistence of another!
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The “emptiness problem” 

• Let ETM = 𝑀 ∶ there does not exist 𝑤 such that 𝑀 accepts 𝑤

• Claim: ETM is undecidable

• Proof: We will design a mapping reduction from HALT to ETM

• Let 𝑓 𝑀,𝑤 = 𝑀′ , where 𝑀′ is a TM that does the following on input 𝑥:

1. Simulate 𝑀 on 𝑤

2. If 𝑀 ever halts, accept

• YES maps to YES NO maps to NO 
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Given ⟨𝑀,𝑤⟩, how would we compute 𝑓 𝑀,𝑤 ?

Respond at PollEv.com/whoza or text “whoza” to 22333 

B: Simulate 𝑀 on 𝑤 and construct
𝑀′  based on simulation results

A: Simulate 𝑀 on 𝑤, and if it ever
halts, accept

D: There does not exist an
algorithm that computes 𝑓

C: Modify the transition function
of 𝑀 to construct 𝑀′

Computable 
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