
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Which languages are decidable?

2

Undecidability

• First, we proved that SELF-REJECTORS is

undecidable

• Then, we used the fact that SELF-REJECTORS is undecidable to

prove that HALT is undecidable

• Then, we used the fact that HALT is undecidable to prove that other

interesting languages are undecidable

3

The “acceptance problem”

• Let ATM = { 𝑀,𝑤 :𝑀 is a Turing machine that accepts input 𝑤}

• Claim: ATM is undecidable

• Proof by contradiction: Assume that 𝐴 decides ATM

• Let’s design an algorithm that decides HALT. Given 𝑀,𝑤 :

1. Construct 𝑀′ , where 𝑀′ is a modified version of 𝑀 in which all

rejecting transitions have been changed into accepting transitions

2. Simulate 𝐴 on 𝑀′, 𝑤 . If it accepts, accept; if it rejects, reject.

4

Reductions

• The proof strategy we have been using is called a reduction

• A reduction is a way of relating one problem to another problem

5

Informal definition:

“Problem A reduces to problem B”

means

“A solution to problem B would imply a solution to problem A”

Reductions

• Example: Suppose I bring my daughter to a zoo in Mexico. She asks, “Do they have

octopuses? Do they have camels? Do they have gorillas? Do they have …”

• My job is to solve problem A: “Given an animal name in English, determine

whether it’s at the zoo”

• A helpful zoo employee can solve problem B: “Given an animal name in Spanish,

determine whether it’s at the zoo”

• We can reduce problem A to problem B by translating from English to Spanish

6

Mapping reductions

• There are multiple kinds of reductions in computer science

• In this course, we will focus on a kind of reduction called a

“mapping reduction”

7

Mapping reductions

• Let 𝐿1 and 𝐿2 be languages over the alphabets Σ1 and Σ2 respectively

• Definition: A mapping reduction from 𝐿1 to 𝐿2 is a function 𝑓: Σ1
∗ → Σ2

∗ such

that

• For every 𝑤 ∈ 𝐿1, we have 𝑓 𝑤 ∈ 𝐿2 “YES maps to YES”

• For every 𝑤 ∈ Σ1
∗ ∖ 𝐿1, we have 𝑓 𝑤 ∉ 𝐿2 “NO maps to NO”

• The function 𝑓 is computable, i.e., there exists a Turing machine 𝑀 such that for every

𝑤 ∈ Σ1
∗, 𝑀 halts on input 𝑤 with ♢𝑓 𝑤 written on its tape (followed by blanks)

8

𝑓 octopus = pulpo

𝑀 = Google Translate

Mapping reductions

• Informally, a mapping reduction from 𝐿1 to 𝐿2 is a way of converting

instances of 𝐿1 into equivalent instances of 𝐿2

• Note: Any string 𝑤 ∈ Σ∗ is called an “instance” of 𝐿 ⊆ Σ∗

9

Σ1
∗ Σ2

∗

𝐿1 𝐿2

Using reductions to prove decidability

• Suppose there exists a mapping reduction 𝑓 from 𝐿1 to 𝐿2

• Claim: If 𝐿2 is decidable, then 𝐿1 is decidable

• Proof: Given 𝑤 ∈ Σ1
∗:

1. Compute 𝑓 𝑤 ∈ Σ2
∗ (this is possible because 𝑓 is computable)

2. Check whether 𝑓 𝑤 ∈ 𝐿2 (this is possible because 𝐿2 is decidable)

3. Accept if 𝑓 𝑤 ∈ 𝐿2 and reject if 𝑓 𝑤 ∉ 𝐿2

10

Using reductions to prove decidability

11

Algorithm that

computes 𝑓

Algorithm that

decides 𝐿2
𝑤

𝑓 𝑤
Acc/Rej

Algorithm that decides 𝐿1

The “mapping reduction” is 𝑓

Using reductions to prove undecidability

• Suppose there exists a mapping reduction 𝑓 from 𝐿1 to 𝐿2

• Claim: If 𝐿1 is undecidable, then 𝐿2 is undecidable

• Proof: If 𝐿2 were decidable, then 𝐿1 would be decidable

12

Using reductions to prove undecidability

• Strategy for proving that some language 𝐿 is undecidable:

• Identify a suitable language 𝐿HARD that we previously proved is undecidable

• Design a mapping reduction 𝑓 from 𝐿HARD to 𝐿

• Make sure you do the reduction in the correct direction!

• The amazing thing about this strategy is that the existence of one

algorithm implies the nonexistence of another!

13

The “emptiness problem”

• Let ETM = 𝑀 ∶ there does not exist 𝑤 such that 𝑀 accepts 𝑤

• Claim: ETM is undecidable

• Proof: We will design a mapping reduction from HALT to ETM

• Let 𝑓 𝑀,𝑤 = 𝑀′ , where 𝑀′ is a TM that does the following on input 𝑥:

1. Simulate 𝑀 on 𝑤

2. If 𝑀 ever halts, accept

• YES maps to YES NO maps to NO
14

Given ⟨𝑀,𝑤⟩, how would we compute 𝑓 𝑀,𝑤 ?

Respond at PollEv.com/whoza or text “whoza” to 22333

B: Simulate 𝑀 on 𝑤 and construct
𝑀′ based on simulation results

A: Simulate 𝑀 on 𝑤, and if it ever
halts, accept

D: There does not exist an
algorithm that computes 𝑓

C: Modify the transition function
of 𝑀 to construct 𝑀′

Computable

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Which languages are decidable?
	Slide 3: Undecidability
	Slide 4: The “acceptance problem”
	Slide 5: Reductions
	Slide 6: Reductions
	Slide 7: Mapping reductions
	Slide 8: Mapping reductions
	Slide 9: Mapping reductions
	Slide 10: Using reductions to prove decidability
	Slide 11: Using reductions to prove decidability
	Slide 12: Using reductions to prove undecidability
	Slide 13: Using reductions to prove undecidability
	Slide 14: The “emptiness problem”

