CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Which languages are decidable?

Undecidability

* First, we proved that SELF-REJECTORS is

undecidable

* Then, we used the fact that SELF-REJECTORS is undecidable to
prove that HALT is undecidable

* Then, we used the fact that HALT is undecidable to prove that other

interesting languages are undecidable

The “acceptance problem”

e Let Ay = {{M,w): M is a Turing machine that accepts input w}
* Claim: Aty is undecidable

* Proof by contradiction: Assume that A decides Aty

* Let’s design an algorithm that decides HALT. Given (M, w):

1. Construct (M'), where M’ is a modified version of M in which all

rejecting transitions have been changed into accepting transitions

2. Simulate A on (M',w). If it accepts, accept; if it rejects, reject.

Reductions

* The proof strategy we have been using is called a reduction

* A reduction is a way of relating one problem to another problem

Informal definition:
“Problem A reduces to problem B”

Mmeans

“A solution to problem B would imply a solution to problem A”

= Google Translate LI @

Xp Text M Images B Documen ts B Websites

Reductions

Detect language English Germar v & Spanish English German v

£)

 Example: Suppose | bring my daughter to a zoo in Mexico. She asks, “Do they have

octopus X pulpo & w

octopuses? Do they have camels? Do they have gorillas? Do they have ...”

My job is to solve problem A: “Given an animal name in English, determine

whether it’s at the zoo”

* A helpful zoo employee can solve problem B: “Given an animal name in Spanish,

determine whether it’s at the zoo”

* We can reduce problem A to problem B by translating from English to Spanish

Mapping reductions

* There are multiple kinds of reductions in computer science

* In this course, we will focus on a kind of reduction called a

“mapping reduction”

f(octopus) = pulpo

Mapping reductions

M = Google Translate

* Let L; and L, be languages over the alphabets X; and X, respectively

* Definition: A mapping reduction from Lq to L, is a function f:Z7 = Z7 such

that
* Foreveryw € L, we have f(w) € L, “YES maps to YES”
* Foreveryw € X7 \ L, we have f(w) € L, “NO maps to NO”

* The function f is computable, i.e., there exists a Turing machine M such that for every

w € XI, M halts on input w with ¢ f(w) written on its tape (followed by blanks)

Mapping reductions

* Informally, a mapping reduction from L to L, is a way of converting
instances of L, into equivalent instances of L,

* Note: Any string w € X" is called an “instance” of L € ¥*

Using reductions to prove decidability

* Suppose there exists a mapping reduction f from L, to L,
* Claim: If L, is decidable, then L is decidable

* Proof: Given w € X1:
1. Compute f(w) € Z5 (this is possible because f is computable)
2. Check whether f(w) € L, (this is possible because L, is decidable)

3. Acceptif f(w) € L, and rejectif f(w) & L,

10

Using reductions to prove decidability

Algorithm that decides L4

P e e e T e e e e e e e T T T N I il T T T

Algorithm that f(w)

computes [

Algorithm that

decides L,

__

The “mapping reduction” is f

11

Using reductions to prove undecidability

* Suppose there exists a mapping reduction f from L, to L,
* Claim: If L; is undecidable, then L, is undecidable

* Proof: If L, were decidable, then L; would be decidable

12

Using reductions to prove undecidability

* Strategy for proving that some language L is undecidable:

* Identify a suitable language Lyarp that we previously proved is undecidable
* Design a mapping reduction f from Lyarp to L

« /\ Make sure you do the reduction in the correct direction!

* The amazing thing about this strategy is that the existence of one

algorithm implies the nonexistence of another!

13

Given (M, w), how would we compute f((M,w))? >

/(° <
The “emptiness
A: Simulate M on w, and if it ever B: Simulate M on w and construct
halts, accept (M') based on simulation results
C: Modify the transition function D: There does not exist an
* Let ETM — {<M> . there d0‘< of M to construct (M") >< algorithm that computes f >

Respond at PollEv.com/whoza or text “whoza” to 22333

* Claim: E1)s is undecidable

* Proof: We will design a mapping reduction from HALT to Egp

e Let f((M,w)) = (M'), where M’ is a TM that does the following on input x:

1. Simulate M onw

2. If M ever halts, accept

* YESmaps to YES & NO maps to NO & Computable &/

14

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Which languages are decidable?
	Slide 3: Undecidability
	Slide 4: The “acceptance problem”
	Slide 5: Reductions
	Slide 6: Reductions
	Slide 7: Mapping reductions
	Slide 8: Mapping reductions
	Slide 9: Mapping reductions
	Slide 10: Using reductions to prove decidability
	Slide 11: Using reductions to prove decidability
	Slide 12: Using reductions to prove undecidability
	Slide 13: Using reductions to prove undecidability
	Slide 14: The “emptiness problem”

