CMSC 28100

Introduction to
 Complexity Theory

Spring 2024
Instructor: William Hoza

Which languages are decidable?

Undecidability

- We have seen several examples of undecidable languages
- SELF-REJECTORS, HALT, $\overline{\text { HALT, }}, \mathrm{A}_{\mathrm{TM}}, \mathrm{E}_{\mathrm{TM}}$

Undecidability beyond analysis of TMs

- So far, every undecidable problem we have seen has been a problem about analyzing the behavior of a given Turing machine
- Does it halt on such-and-such input?
- Is there any input it accepts?

- Etc.
- What else is undecidable?

Post's Correspondence Problem

- Given: An alphabet Λ and two sequences of strings
$b_{1}, \ldots, b_{k}, t_{1}, \ldots, t_{k} \in \Lambda^{*}$
- Goal: Determine whether there exists a sequence of indices i_{1}, \ldots, i_{n} such that

$$
t_{i_{1}} t_{i_{2}} \cdots t_{i_{k}}=b_{i_{1}} b_{i_{2}} \cdots b_{i_{k}}
$$

Post's Correspondence Problem

- Helpful picture: We are given a set of "dominos"

- Goal: Determine whether it is possible to generate a "match"

$$
\begin{array}{|c|c|c|c|c|}
\hline t_{i_{1}} & t_{i_{2}} & t_{i_{3}} & t_{i_{4}} & t_{i_{5}} \\
b_{i_{1}} & b_{i_{2}} & b_{i_{3}} & b_{i_{4}} & b_{i_{5}} \\
\hline
\end{array}
$$

in which the sequence of symbols on top equals the sequence of symbols on the bottom

- Using the same domino multiple times is permitted

Post's Correspondence Problem: Example 1

- Suppose we are given

| 0 |
| :--- | :--- |
| 1 |\quad| 1 |
| :--- |
| 0 |\quad| 11 |
| :---: |
| ϵ |\quad| ϵ |
| :---: |
| 00 |

- This is a YES case. Match:

$$
\begin{array}{|c|l|l|c|}
\hline 11 & 0 & 0 & \epsilon \\
\epsilon & 1 & 1 & 00 \\
\hline
\end{array}
$$

Post's Correspondence Problem: Example 2

- Suppose we are given

| MP
 OM |
| :--- | | IO |
| :---: |
| T |\quad| N |
| :---: |
| ION |\quad| CO |
| :---: |
| C |\quad| UT |
| :--- |
| PU |\quad| AT |
| :--- |
| TA |

- This is a YES case because there is a match:

CO	MP	UT	AT	IO	N
C	OM	PU	TA	T	ION
	\leftarrow COMPUTATION				
\leftarrow COMPUTATION					

- ...and another match:

CO	MP	UT	IO	N
C	OM	PU	T	ION
		\leftarrow COMPUTION		
\leftarrow COMPUTION				

Post's Correspondence Problem: Example 3

- Suppose we are given

0
01
:---:
10

- This is a NO case. Proof: A match would have to start with
and consequently, we will always have more ones on the bottom than on the top

Post's Correspondence Problem is undecidable

- Define

$$
\operatorname{PCP}=\left\{\left\langle\Lambda, t_{1}, \ldots, t_{k}, b_{1}, \ldots, b_{k}\right\rangle: \exists i_{1}, \ldots, i_{n} \text { such that } t_{i_{1}} \cdots t_{i_{n}}=b_{i_{1}} \cdots b_{i_{n}}\right\}
$$

Theorem: PCP is undecidable

- Proof outline:
- Step 1: Show that a modified version ("MPCP") is undecidable by reduction from HALT
- Step 2: Show that PCP is undecidable by reduction from MPCP

Modified PCP

$\operatorname{MPCP}=\left\{\left\langle\Lambda, t_{1}, \ldots, t_{k}, b_{1}, \ldots, b_{k}\right\rangle: \exists i_{1}, \ldots, i_{n}\right.$ such that $\left.t_{1} t_{i_{1}} \cdots t_{i_{n}}=b_{1} b_{i_{1}} \cdots b_{i_{n}}\right\}$

- The difference between PCP and MPCP: In MPCP, matches must start with the first domino

Reduction from HALT to MPCP

- To show that MPCP is undecidable, we will design a mapping reduction $f(\langle M, w\rangle)=\left\langle\Lambda, t_{1}, \ldots, t_{k}, b_{1}, \ldots, b_{k}\right\rangle$
- We will ensure that:
- If M halts on w, then there is a match ("YES maps to "YES")
- If M loops on w, then there is no match ("NO maps to NO")
- The function f is computable

Reduction from HALT to MPCP

- For the reduction, we are given $\langle M, w\rangle$, where

$$
M=\left(Q, \Sigma, \Gamma, \diamond, \sqcup, \delta, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$

- Our job is to produce a sequence of dominos
- Plan: Produce dominos such that constructing a match is equivalent to constructing a halting computation history

Reduction from I

- We produce the following domi

- \(\begin{gathered}\epsilon

\diamond q_{0} w \sqcup \#\end{gathered},\)| $\#$ |
| :---: |
| $\#$ |, | $\#$ |
| :---: |
| $\vdots \#$ |,

q_{ac}

- | $q b$ |
| :---: |
| $b^{\prime} q^{\prime}$ | for every $q, b, q^{\prime}, b^{\prime}$ such that $\delta(q, b)=\left(q^{\prime}, b^{\prime}, \mathrm{R}\right)$ and $q \notin\left\{q_{\text {accept }}, q_{\text {reject }}\right\}$
- $\begin{gathered}a q b \\ q^{\prime} a b^{\prime}\end{gathered}$ for every $q, b, q^{\prime}, b^{\prime}, a$ such that $\delta(q, b)=\left(q^{\prime}, b^{\prime}, \mathrm{L}\right)$ and $q \notin\left\{q_{\text {accept }}, q_{\text {reject }}\right\}$
- | b |
| :---: |
| b |, | $b q$ |
| :---: |
| q | , and | $q b$ |
| :---: | :---: |
| q | for every $b \in \Gamma$ and $q \in\left\{q_{\text {accept }}, q_{\text {reject }}\right\}$

Domino feature 1

- Let $C=u q v$ be a configuration where $v \neq \epsilon$ and $u v$ starts with \diamond
- Fact: There is a sequence of dominos such that the top string is C and bottom string is NEXT(C)
- Think of this sequence as one "super-domino" \square

YES maps to YES

- Let C_{0}, \ldots, C_{T} be the halting computation history of M on w
- Let $C_{i}^{\prime}=C_{i} \sqcup^{i}$, and note that $\operatorname{NEXT}\left(C_{i}^{\prime} \sqcup\right)=C_{i+1}^{\prime}$
- Partial match:

ϵ	$C_{0}^{\prime} \sqcup$	$\#$	$C_{1}^{\prime} \sqcup$	$\#$				
$\diamond q_{0} w \sqcup \#$	C_{1}^{\prime}	$\mathrm{U} \#$	C_{2}^{\prime}	$\mathrm{U} \#$	\quad	$\#$	$C_{T-1}^{\prime} \sqcup$	$\#$
:---:	:---:	:---:	:---:					
$\sqcup \#$	C_{T}^{\prime}	$\#$						

- At this point, we have an extra $C_{T}^{\prime} \#$ on the bottom

Domino feature 2

- Fact: For every halting configuration H with $|H|>1$, there is a sequence of dominos such that the top string is H and the bottom string is a halting configuration H^{\prime} with $\left|H^{\prime}\right|=|H|-1$
- Proof: Use the \begin{tabular}{|c}
b

b

,\quad

$b q$

q

 , and

$q b$

q
\end{tabular} dominos to effectively "delete" one symbol from H

YES maps to YES

- Starting with $H_{0}=C_{T}^{\prime}$, we construct a sequence of shorter and shorter halting configurations H_{1}, \ldots, H_{n} such that we have a super-domino for every i, until eventually we reach $H_{n} \in\left\{q_{\text {accept }}, q_{\text {reject }}\right\}$
- Full match:

ϵ	$C_{0}^{\prime} \sqcup$	$\#$	$C_{1}^{\prime} \sqcup$	$\#$
$\diamond q_{0} w \sqcup \#$	C_{1}^{\prime}	$\sqcup \#$	C_{2}^{\prime}	$\sqcup \#$

$\#$	$C_{T-1}^{\prime} \sqcup$	$\#$	H_{0}	$\#$	H_{1}	$\#$
$\sqcup \#$	C_{T}^{\prime}	$\#$	H_{1}	$\#$	H_{2}	$\#$

$\#$	H_{n-1}	$\#$	$H_{n} \#$
$\#$	H_{n}	$\#$	ϵ

NO maps to NO

- Suppose M loops on w. Let $C_{0}, C_{1}, C_{2}, \ldots$ be the computation history of M on w (an infinite sequence of configurations)
- Assume, for the sake of contradiction, that there is a match

