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Which languages are decidable?
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Undecidability

• We have seen several examples of

undecidable languages

• SELF-REJECTORS, HALT, HALT, ATM, ETM
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Undecidability beyond analysis of TMs

• So far, every undecidable problem we have 

seen has been a problem about analyzing 

the behavior of a given Turing machine

• Does it halt on such-and-such input?

• Is there any input it accepts?

• Etc.

• What else is undecidable?
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Post’s Correspondence Problem

• Given: An alphabet Λ and two sequences of strings 

𝑏1, … , 𝑏𝑘 , 𝑡1, … , 𝑡𝑘 ∈ Λ∗

• Goal: Determine whether there exists a sequence of indices 𝑖1, … , 𝑖𝑛

such that

𝑡𝑖1
𝑡𝑖2

⋯ 𝑡𝑖𝑘
= 𝑏𝑖1

𝑏𝑖2
⋯ 𝑏𝑖𝑘
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Post’s Correspondence Problem

• Helpful picture: We are given a set of “dominos”

• Goal: Determine whether it is possible to generate a “match”

in which the sequence of symbols on top equals the sequence of 

symbols on the bottom

• Using the same domino multiple times is permitted
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Post’s Correspondence Problem: Example 1

• Suppose we are given

• This is a YES case. Match:
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Post’s Correspondence Problem: Example 2

• Suppose we are given

• This is a YES case because there is a match:

• …and another match:
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Post’s Correspondence Problem: Example 3

• Suppose we are given

• This is a NO case. Proof: A match would have to start with             ,

and consequently, we will always have more ones on the bottom than 

on the top
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Post’s Correspondence Problem is undecidable

• Define

PCP = { Λ, 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘 ∶ ∃𝑖1, … , 𝑖𝑛 such that 𝑡𝑖1
⋯ 𝑡𝑖𝑛

= 𝑏𝑖1
⋯ 𝑏𝑖𝑛

}

• Proof outline:

• Step 1: Show that a modified version (“MPCP”) is undecidable by reduction from HALT

• Step 2: Show that PCP is undecidable by reduction from MPCP
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Theorem: PCP is undecidable



Modified PCP

MPCP = { Λ, 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘 ∶ ∃𝑖1, … , 𝑖𝑛 such that 𝑡1𝑡𝑖1
⋯ 𝑡𝑖𝑛

= 𝑏1𝑏𝑖1
⋯ 𝑏𝑖𝑛

}

• The difference between PCP and MPCP: In MPCP, matches must start with the 

first domino
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Reduction from HALT to MPCP

• To show that MPCP is undecidable, we will design a mapping reduction

𝑓 𝑀, 𝑤 = Λ, 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘

• We will ensure that:

• If 𝑀 halts on 𝑤, then there is a match (“YES maps to “YES”)

• If 𝑀 loops on 𝑤, then there is no match (“NO maps to NO”)

• The function 𝑓 is computable
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Reduction from HALT to MPCP

• For the reduction, we are given ⟨𝑀, 𝑤⟩, where

𝑀 = 𝑄, Σ, Γ, ♢,⊔, 𝛿, 𝑞0, 𝑞accept, 𝑞reject

• Our job is to produce a sequence of dominos

• Plan: Produce dominos such that constructing a match is equivalent to 

constructing a halting computation history
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Reduction from HALT to MPCP

• We produce the following dominos:

• , ,            ,                  , and

• for every 𝑞, 𝑏, 𝑞′, 𝑏′ such that 𝛿 𝑞, 𝑏 = (𝑞′, 𝑏′, R) and 𝑞 ∉ 𝑞accept, 𝑞reject

• for every 𝑞, 𝑏, 𝑞′, 𝑏′, 𝑎 such that 𝛿 𝑞, 𝑏 = (𝑞′, 𝑏′, L) and 𝑞 ∉ 𝑞accept, 𝑞reject

• , , and  for every 𝑏 ∈ Γ and 𝑞 ∈ 𝑞accept, 𝑞reject
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Given ⟨𝑀, 𝑤⟩, how would we compute 𝑓 𝑀, 𝑤 ?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: There does not exist an
algorithm that computes 𝑓 

A: Simulate 𝑀 on 𝑤. If it accepts,
accept; if it rejects, reject

B: Simulate 𝑀 on 𝑤 and copy
whatever dominos it produces

D: Inspect the transition function
of 𝑀 to figure out the dominos



Domino feature 1

• Let 𝐶 = 𝑢𝑞𝑣 be a configuration where 𝑣 ≠ 𝜖 and 𝑢𝑣 starts with ♢

• Fact: There is a sequence of dominos such that the top string is 𝐶 and 

bottom string is NEXT 𝐶

• Think of this sequence as one “super-domino”
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YES maps to YES

• Let 𝐶0, … , 𝐶𝑇 be the halting computation history of 𝑀 on 𝑤

• Let 𝐶𝑖
′ = 𝐶𝑖 ⊔𝑖, and note that NEXT 𝐶𝑖

′ ⊔ = 𝐶𝑖+1
′

• Partial match:

• At this point, we have an extra 𝐶𝑇
′ # on the bottom
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Domino feature 2

• Fact: For every halting configuration 𝐻 with 𝐻 > 1, there is a 

sequence of dominos such that the top string is 𝐻 and the bottom 

string is a halting configuration 𝐻′ with 𝐻′ = 𝐻 − 1

• Proof: Use the , ,  and dominos to effectively 

“delete” one symbol from 𝐻
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YES maps to YES

• Starting with 𝐻0 = 𝐶𝑇
′ , we construct a sequence of shorter and shorter 

halting configurations 𝐻1, … , 𝐻𝑛 such that we have a super-domino

for every 𝑖, until eventually we reach 𝐻𝑛 ∈ 𝑞accept, 𝑞reject

• Full match:
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NO maps to NO

• Suppose 𝑀 loops on 𝑤. Let 𝐶0, 𝐶1, 𝐶2, … be the computation history of 𝑀

on 𝑤 (an infinite sequence of configurations)

• Assume, for the sake of contradiction, that there is a match
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