CMSC 28100

Introduction to Complexity Theory

Spring 2024 Instructor: William Hoza

Which languages are decidable?

Undecidability

- We have seen several examples of undecidable languages
- SELF-REJECTORS, HALT, \overline{HALT} , A_{TM} , E_{TM}

Undecidability beyond analysis of TMs

- So far, every undecidable problem we have seen has been a problem about analyzing the behavior of a given Turing machine
 - Does it halt on such-and-such input?
 - Is there any input it accepts?
 - Etc.
- What else is undecidable?

Post's Correspondence Problem

• Given: An alphabet Λ and two sequences of strings

 $b_1,\ldots,b_k,t_1,\ldots,t_k\in\Lambda^*$

• Goal: Determine whether there exists a sequence of indices i_1, \ldots, i_n such that

$$t_{i_1}t_{i_2}\cdots t_{i_k}=b_{i_1}b_{i_2}\cdots b_{i_k}$$

Post's Correspondence Problem

• Helpful picture: We are given a set of "dominos"

• Goal: Determine whether it is possible to generate a "match"

in which the sequence of symbols on top equals the sequence of

symbols on the bottom

• Using the same domino multiple times is permitted

Post's Correspondence Problem: Example 1

• Suppose we are given

• This is a YES case. Match:

Post's Correspondence Problem: Example 2

• Suppose we are given

• This is a YES case because there is a match:

CO	MP	UT	AT	IO	N	← COMPUTATION
С	OM	PU	TA	Т	ION	← COMPUTATION

• ...and another match:

CO	MP	UT	IO	N	← COMPUTION
С	OM	PU	Т	ION	\leftarrow COMPUTION

Post's Correspondence Problem: Example 3

• Suppose we are given

• This is a NO case. Proof: A match would have to start with

and consequently, we will always have more ones on the bottom than on the top

Post's Correspondence Problem is undecidable

• Define

 $PCP = \{ \langle \Lambda, t_1, \dots, t_k, b_1, \dots, b_k \rangle : \exists i_1, \dots, i_n \text{ such that } t_{i_1} \cdots t_{i_n} = b_{i_1} \cdots b_{i_n} \}$

Theorem: PCP is undecidable

- Proof outline:
 - Step 1: Show that a modified version ("MPCP") is undecidable by reduction from HALT
 - Step 2: Show that PCP is undecidable by reduction from MPCP

Modified PCP

 $MPCP = \{ \langle \Lambda, t_1, \dots, t_k, b_1, \dots, b_k \rangle : \exists i_1, \dots, i_n \text{ such that } t_1 t_{i_1} \cdots t_{i_n} = b_1 b_{i_1} \cdots b_{i_n} \}$

• The difference between PCP and MPCP: In MPCP, matches must start with the first domino

Reduction from HALT to MPCP

- To show that MPCP is undecidable, we will design a mapping reduction $f(\langle M, w \rangle) = \langle \Lambda, t_1, \dots, t_k, b_1, \dots, b_k \rangle$
- We will ensure that:
 - If *M* halts on *w*, then there is a match ("YES maps to "YES")
 - If *M* loops on *w*, then there is no match ("NO maps to NO")
 - The function *f* is computable

Reduction from HALT to MPCP

• For the reduction, we are given $\langle M, w \rangle$, where

 $M = (Q, \Sigma, \Gamma, \Diamond, \sqcup, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

- Our job is to produce a sequence of dominos
- Plan: Produce dominos such that constructing a match is equivalent to constructing a halting computation history

Domino feature 1

- Let C = uqv be a configuration where $v \neq \epsilon$ and uv starts with \Diamond
- Fact: There is a sequence of dominos such that the top string is *C* and bottom string is NEXT(*C*)
- Think of this sequence as one "super-domino"

YES maps to YES

- Let C_0, \ldots, C_T be the halting computation history of M on w
- Let $C'_i = C_i \sqcup^i$, and note that $NEXT(C'_i \sqcup) = C'_{i+1}$
- Partial match:

$$\begin{array}{c|c} \epsilon \\ \diamond q_0 w \sqcup \# \\ C'_1 \\ \end{array} \begin{array}{c|c} C'_1 \\ \Box \# \\ C'_2 \\ \end{array} \begin{array}{c|c} T \\ U \\ U \\ U \\ U \\ \end{array} \begin{array}{c|c} \# \\ U \\ U \\ U \\ U \\ \end{array} \begin{array}{c|c} T \\ U \\ U \\ U \\ U \\ U \\ U \\ \end{array} \begin{array}{c|c} \# \\ C'_{T-1} \\ U \\ U \\ U \\ U \\ \end{array} \begin{array}{c|c} \# \\ C'_{T-1} \\ U \\ U \\ U \\ U \\ \end{array} \begin{array}{c|c} \# \\ C'_{T-1} \\ U \\ U \\ U \\ \end{array} \begin{array}{c|c} \# \\ C'_{T-1} \\ U \\ U \\ U \\ U \\ U \\ \end{array} \right$$

• At this point, we have an extra C'_T on the bottom

Domino feature 2

- Fact: For every halting configuration H with |H| > 1, there is a sequence of dominos such that the top string is H and the bottom string is a halting configuration H' with |H'| = |H| 1
- Proof: Use the $\begin{bmatrix} b \\ b \end{bmatrix}$, $\begin{bmatrix} bq \\ q \end{bmatrix}$, and $\begin{bmatrix} qb \\ q \end{bmatrix}$ dominos to effectively

"delete" one symbol from H

YES maps to YES

- Starting with $H_0 = C'_T$, we construct a sequence of shorter and shorter halting configurations $H_1, ..., H_n$ such that we have a super-domino for every *i*, until eventually we reach $H_n \in \{q_{accept}, q_{reject}\}$
- Full match:

ϵ ◊ q_0w ⊔#	$\begin{array}{c} \mathcal{C}_0' \sqcup \\ \mathcal{C}_1' \end{array}$	# ⊔ #	$\begin{array}{c} \mathcal{C}_1' \sqcup \\ \mathcal{C}_2' \end{array}$	# ⊔ #	•••	# ⊔ #	$\begin{array}{c} C_{T-1}' \sqcup \\ C_{T}' \end{array}$	# #	H_0 H_1	# #	H_1 H_2	# #		# #	$ \begin{array}{c} H_{n-1} \\ H_n \end{array} $	# #	$H_n # \epsilon$
---------------------------	--	----------	--	----------	-----	----------	--	--------	----------------	--------	----------------	--------	--	--------	---	--------	------------------

NO maps to NO

- Suppose M loops on w. Let C₀, C₁, C₂, ... be the computation history of M on w (an infinite sequence of configurations)
- Assume, for the sake of contradiction, that there is a match